Talk to the Veterans Crisis Line now
U.S. flag
An official website of the United States government

VA Health Systems Research

Go to the VA ORD website
Go to the QUERI website

HSR&D Citation Abstract

Search | Search by Center | Search by Source | Keywords in Title

Antiviral Resistance and Phage Counter Adaptation to Antibiotic-Resistant Extraintestinal Pathogenic .

Salazar KC, Ma L, Green SI, Zulk JJ, Trautner BW, Ramig RF, Clark JR, Terwilliger AL, Maresso AW. Antiviral Resistance and Phage Counter Adaptation to Antibiotic-Resistant Extraintestinal Pathogenic . mBio. 2021 Apr 27; 12(2).

Dimensions for VA is a web-based tool available to VA staff that enables detailed searches of published research and research projects.

If you have VA-Intranet access, click here for more information vaww.hsrd.research.va.gov/dimensions/

VA staff not currently on the VA network can access Dimensions by registering for an account using their VA email address.
   Search Dimensions for VA for this citation
* Don't have VA-internal network access or a VA email address? Try searching the free-to-the-public version of Dimensions



Abstract:

Extraintestinal pathogenic (ExPEC), often multidrug resistant (MDR), is a leading cause of urinary tract and systemic infections. The crisis of emergent MDR pathogens has led some to propose bacteriophages as a therapeutic. However, bacterial resistance to phage is a concerning issue that threatens to undermine phage therapy. Here, we demonstrate that sequence type 131, a circulating pandemic strain of ExPEC, rapidly develops resistance to a well-studied and therapeutically active phage (?HP3). Whole-genome sequencing of the resisters revealed truncations in genes involved in lipopolysaccharide (LPS) biosynthesis, the outer membrane transporter , or both, implicating them as phage receptors. We found ExPEC resistance to phage is associated with a loss of fitness in host microenvironments and attenuation in a murine model of systemic infection. Furthermore, we constructed a novel phage-bacterium bioreactor to generate an evolved phage isolate with restored infectivity to all LPS-truncated ExPEC resisters. This study suggests that although the resistance of pandemic to phage is frequent, it is associated with attenuation of virulence and susceptibility to new phage variants that arise by directed evolution. In response to the rising crisis of antimicrobial resistance, bacteriophage (phage) therapy has gained traction. In the United States, there have been over 10 cases of largely successful compassionate-use phage therapy to date. The resilience of pathogens allowing their broad antibiotic resistance means we must also consider resistance to therapeutic phages. This work fills gaps in knowledge regarding development of phage resisters in a model of infection and finds critical fitness losses in those resisters. We also found that the phage was able to rapidly readapt to these resisters.





Questions about the HSR website? Email the Web Team

Any health information on this website is strictly for informational purposes and is not intended as medical advice. It should not be used to diagnose or treat any condition.