Talk to the Veterans Crisis Line now
U.S. flag
An official website of the United States government

VA Health Systems Research

Go to the VA ORD website
Go to the QUERI website

HSR&D Citation Abstract

Search | Search by Center | Search by Source | Keywords in Title

Predictive Algorithm for Hepatic Steatosis Detection Using Elastography Data in the Veterans Affairs Electronic Health Records.

Bangaru S, Sundaresh R, Lee A, Prause N, Hao F, Dong TS, Tincopa M, Cholankeril G, Rich NE, Kawamoto J, Bhattacharya D, Han SB, Patel AA, Shaheen M, Benhammou JN. Predictive Algorithm for Hepatic Steatosis Detection Using Elastography Data in the Veterans Affairs Electronic Health Records. Digestive diseases and sciences. 2023 Oct 21.

Dimensions for VA is a web-based tool available to VA staff that enables detailed searches of published research and research projects.

If you have VA-Intranet access, click here for more information vaww.hsrd.research.va.gov/dimensions/

VA staff not currently on the VA network can access Dimensions by registering for an account using their VA email address.
   Search Dimensions for VA for this citation
* Don't have VA-internal network access or a VA email address? Try searching the free-to-the-public version of Dimensions



Abstract:

BACKGROUND AND AIMS: Nonalcoholic fatty liver disease (NAFLD) has reached pandemic proportions. Early detection can identify at-risk patients who can be linked to hepatology care. The vibration-controlled transient elastography (VCTE) controlled attenuation parameter (CAP) is biopsy validated to diagnose hepatic steatosis (HS). We aimed to develop a novel clinical predictive algorithm for HS using the CAP score at a Veterans' Affairs hospital. METHODS: We identified 403 patients in the Greater Los Angeles VA Healthcare System with valid VCTEs during 1/2018-6/2020. Patients with alcohol-associated liver disease, genotype 3 hepatitis C, any malignancies, or liver transplantation were excluded. Linear regression was used to identify predictors of NAFLD. To identify a CAP threshold for HS detection, receiver operating characteristic analysis was applied using liver biopsy, MRI, and ultrasound as the gold standards. RESULTS: The cohort was racially/ethnically diverse (26% Black/African American; 20% Hispanic). Significant positive predictors of elevated CAP score included diabetes, cholesterol, triglycerides, BMI, and self-identifying as Hispanic. Our predictions of CAP scores using this model strongly correlated (r = 0.61, p < 0.001) with actual CAP scores. The NAFLD model was validated in an independent Veteran cohort and yielded a sensitivity of 82% and specificity 83% (p < 0.001, 95% CI 0.46-0.81%). The estimated optimal CAP for our population cut-off was 273.5 dB/m, resulting in AUC = 75.5% (95% CI 70.7-80.3%). CONCLUSION: Our HS predictive algorithm can identify at-risk Veterans for NAFLD to further risk stratify them by non-invasive tests and link them to sub-specialty care. Given the biased referral pattern for VCTEs, future work will need to address its applicability in non-specialty clinics. Proposed clinical algorithm to identify patients at-risk for NAFLD prior to fibrosis staging in Veteran.





Questions about the HSR website? Email the Web Team

Any health information on this website is strictly for informational purposes and is not intended as medical advice. It should not be used to diagnose or treat any condition.