skip to page content
Talk to the Veterans Crisis Line now
U.S. flag
An official website of the United States government

Health Services Research & Development

Go to the ORD website
Go to the QUERI website

HSR&D Citation Abstract

Search | Search by Center | Search by Source | Keywords in Title

Differentiating Sense through Semantic Interaction Data.

Elizabeth Workman T, Weir C, Rindflesch TC. Differentiating Sense through Semantic Interaction Data. AMIA ... Annual Symposium proceedings / AMIA Symposium. AMIA Symposium. 2017 Feb 10; 2016:1238-1247.

Dimensions for VA is a web-based tool available to VA staff that enables detailed searches of published research and research projects.

If you have VA-Intranet access, click here for more information

VA staff not currently on the VA network can access Dimensions by registering for an account using their VA email address.
   Search Dimensions for VA for this citation
* Don't have VA-internal network access or a VA email address? Try searching the free-to-the-public version of Dimensions


Words which have different representations but are semantically related, such as dementia and delirium, can pose difficult issues in understanding text. We explore the use of interaction frequency data between semantic elements as a means to differentiate concept pairs, using semantic predications extracted from the biomedical literature. We applied datasets of features drawn from semantic predications for semantically related pairs to two Expectation Maximization clustering processes (without, and with concept labels), then used all data to train and evaluate several concept classifying algorithms. For the unlabeled datasets, 80% displayed expected cluster count and similar or matching proportions; all labeled data exhibited similar or matching proportions when restricting cluster count to unique labels. The highest performing classifier achieved 89% accuracy, with F1 scores for individual concept classification ranging from 0.69 to 1. We conclude with a discussion on how these findings may be applied to natural language processing of clinical text.

Questions about the HSR&D website? Email the Web Team

Any health information on this website is strictly for informational purposes and is not intended as medical advice. It should not be used to diagnose or treat any condition.