Talk to the Veterans Crisis Line now
U.S. flag
An official website of the United States government

Health Services Research & Development

Go to the ORD website
Go to the QUERI website

HSR&D Citation Abstract

Search | Search by Center | Search by Source | Keywords in Title

Using Fault Trees to Advance Understanding of Diagnostic Errors.

Rogith D, Iyengar MS, Singh H. Using Fault Trees to Advance Understanding of Diagnostic Errors. Joint Commission Journal on Quality and Patient Safety. 2017 Nov 1; 43(11):598-605.

Dimensions for VA is a web-based tool available to VA staff that enables detailed searches of published research and research projects.

If you have VA-Intranet access, click here for more information

VA staff not currently on the VA network can access Dimensions by registering for an account using their VA email address.
   Search Dimensions for VA for this citation
* Don't have VA-internal network access or a VA email address? Try searching the free-to-the-public version of Dimensions


PROBLEM DEFINITION: Diagnostic errors annually affect at least 5% of adults in the outpatient setting in the United States. Formal analytic techniques are only infrequently used to understand them, in part because of the complexity of diagnostic processes and clinical work flows involved. In this article, diagnostic errors were modeled using fault tree analysis (FTA), a form of root cause analysis that has been successfully used in other high-complexity, high-risk contexts. How factors contributing to diagnostic errors can be systematically modeled by FTA to inform error understanding and error prevention is demonstrated. INITIAL APPROACH: A team of three experts reviewed 10 published cases of diagnostic error and constructed fault trees. The fault trees were modeled according to currently available conceptual frameworks characterizing diagnostic error. The 10 trees were then synthesized into a single fault tree to identify common contributing factors and pathways leading to diagnostic error. KEY INSIGHTS: FTA is a visual, structured, deductive approach that depicts the temporal sequence of events and their interactions in a formal logical hierarchy. The visual FTA enables easier understanding of causative processes and cognitive and system factors, as well as rapid identification of common pathways and interactions in a unified fashion. In addition, it enables calculation of empirical estimates for causative pathways. Thus, fault trees might provide a useful framework for both quantitative and qualitative analysis of diagnostic errors. NEXT STEPS: Future directions include establishing validity and reliability by modeling a wider range of error cases, conducting quantitative evaluations, and undertaking deeper exploration of other FTA capabilities.

Questions about the HSR&D website? Email the Web Team

Any health information on this website is strictly for informational purposes and is not intended as medical advice. It should not be used to diagnose or treat any condition.