Talk to the Veterans Crisis Line now
U.S. flag
An official website of the United States government

VA Health Systems Research

Go to the VA ORD website
Go to the QUERI website

HSR&D Citation Abstract

Search | Search by Center | Search by Source | Keywords in Title

Designing risk prediction models for ambulatory no-shows across different specialties and clinics.

Ding X, Gellad ZF, Mather C, Barth P, Poon EG, Newman M, Goldstein BA. Designing risk prediction models for ambulatory no-shows across different specialties and clinics. Journal of the American Medical Informatics Association : JAMIA. 2018 Aug 1; 25(8):924-930.

Related HSR&D Project(s)

Dimensions for VA is a web-based tool available to VA staff that enables detailed searches of published research and research projects.

If you have VA-Intranet access, click here for more information

VA staff not currently on the VA network can access Dimensions by registering for an account using their VA email address.
   Search Dimensions for VA for this citation
* Don't have VA-internal network access or a VA email address? Try searching the free-to-the-public version of Dimensions


Objective: As available data increases, so does the opportunity to develop risk scores on more refined patient populations. In this paper we assessed the ability to derive a risk score for a patient no-showing to a clinic visit. Methods: Using data from 2 264 235 outpatient appointments we assessed the performance of models built across 14 different specialties and 55 clinics. We used regularized logistic regression models to fit and assess models built on the health system, specialty, and clinic levels. We evaluated fits based on their discrimination and calibration. Results: Overall, the results suggest that a relatively robust risk score for patient no-shows could be derived with an average C-statistic of 0.83 across clinic level models and strong calibration. Moreover, the clinic specific models, even with lower training set sizes, often performed better than the more general models. Examination of the individual models showed that risk factors had different degrees of predictability across the different specialties. Implementation of optimal modeling strategies would lead to capturing an additional 4819 no-shows per-year. Conclusion: Overall, this work highlights both the opportunity for and the importance of leveraging the available electronic health record data to develop more refined risk models.

Questions about the HSR website? Email the Web Team

Any health information on this website is strictly for informational purposes and is not intended as medical advice. It should not be used to diagnose or treat any condition.