Talk to the Veterans Crisis Line now
U.S. flag
An official website of the United States government

VA Health Systems Research

Go to the VA ORD website
Go to the QUERI website

HSR&D Citation Abstract

Search | Search by Center | Search by Source | Keywords in Title

Addressing geographic confounding through spatial propensity scores: a study of racial disparities in diabetes.

Davis ML, Neelon B, Nietert PJ, Hunt KJ, Burgette LF, Lawson AB, Egede LE. Addressing geographic confounding through spatial propensity scores: a study of racial disparities in diabetes. Statistical methods in medical research. 2019 Mar 1; 28(3):734-748.

Dimensions for VA is a web-based tool available to VA staff that enables detailed searches of published research and research projects.

If you have VA-Intranet access, click here for more information vaww.hsrd.research.va.gov/dimensions/

VA staff not currently on the VA network can access Dimensions by registering for an account using their VA email address.
   Search Dimensions for VA for this citation
* Don't have VA-internal network access or a VA email address? Try searching the free-to-the-public version of Dimensions



Abstract:

Motivated by a study exploring differences in glycemic control between non-Hispanic black and non-Hispanic white veterans with type 2 diabetes, we aim to address a type of confounding that arises in spatially referenced observational studies. Specifically, we develop a spatial doubly robust propensity score estimator to reduce bias associated with geographic confounding, which occurs when measured or unmeasured confounding factors vary by geographic location, leading to imbalanced group comparisons. We augment the doubly robust estimator with spatial random effects, which are assigned conditionally autoregressive priors to improve inferences by borrowing information across neighboring geographic regions. Through a series of simulations, we show that ignoring spatial variation results in increased absolute bias and mean squared error, while the spatial doubly robust estimator performs well under various levels of spatial heterogeneity and moderate sample sizes. In the motivating application, we construct three global estimates of the risk difference between race groups: an unadjusted estimate, a doubly robust estimate that adjusts only for patient-level information, and a hierarchical spatial doubly robust estimate. Results indicate a gradual reduction in the risk difference at each stage, with the inclusion of spatial random effects providing a 20% reduction compared to an estimate that ignores spatial heterogeneity. Smoothed maps indicate poor glycemic control across Alabama and southern Georgia, areas comprising the so-called "stroke belt." These results suggest the need for community-specific interventions to target diabetes in geographic areas of greatest need.





Questions about the HSR website? Email the Web Team

Any health information on this website is strictly for informational purposes and is not intended as medical advice. It should not be used to diagnose or treat any condition.