Health Services Research & Development

Veterans Crisis Line Badge
Go to the ORD website
Go to the QUERI website

HSR&D Citation Abstracts

Search | Search by Center | Search by Source | Keywords in Title

Banerjee M, Reynolds E, Andersson HB, Nallamothu BK. Tree-Based Analysis. Circulation. Cardiovascular quality and outcomes. 2019 May 1; 12(5):e004879.
PubMed logo Search for Abstract from PubMed
(This link leaves the website of VA HSR&D.)


Abstract: Tree-based methods have become one of the most flexible, intuitive, and powerful data analytic tools for exploring complex data structures. Tree-based methods provide a natural framework for creating patient subgroups for risk classification. In this article, we review methodological and practical aspects of tree-based methods, with a focus on diagnostic classification (binary outcome) and prognostication (censored survival outcome). Creating an ensemble of trees improves prediction accuracy and addresses instability in a single tree. Ensemble methods are described that rely on resampling from the original data. Finally, we present methods to identify a representative tree from the ensemble that can be used for clinical decision-making. The methods are illustrated using data on ischemic heart disease classification, and data from the SPRINT trial (Systolic Blood Pressure Intervention Trial) on adverse events in patients with high blood pressure.