Talk to the Veterans Crisis Line now
U.S. flag
An official website of the United States government

Health Services Research & Development

Veterans Crisis Line Badge
Go to the ORD website
Go to the QUERI website

HSR&D Citation Abstract

Search | Search by Center | Search by Source | Keywords in Title

Weng Y, Tian L, Tedesco D, Desai K, Asch SM, Carroll I, Curtin C, McDonald KM, Hernandez-Boussard T. Trajectory analysis for postoperative pain using electronic health records: A nonparametric method with robust linear regression and K-medians cluster analysis. Health Informatics Journal. 2019 Oct 17; 1460458219881339.
PubMed logo Search for Abstract from PubMed
(This link leaves the website of VA HSR&D.)


Abstract: Postoperative pain scores are widely monitored and collected in the electronic health record, yet current methods fail to fully leverage the data with fast implementation. A robust linear regression was fitted to describe the association between the log-scaled pain score and time from discharge after total knee replacement. The estimated trajectories were used for a subsequent K-medians cluster analysis to categorize the longitudinal pain score patterns into distinct clusters. For each cluster, a mixture regression model estimated the association between pain score and time to discharge adjusting for confounding. The fitted regression model generated the pain trajectory pattern for given cluster. Finally, regression analyses examined the association between pain trajectories and patient outcomes. A total of 3442 surgeries were identified with a median of 22 pain scores at an academic hospital during 2009-2016. Four pain trajectory patterns were identified and one was associated with higher rates of outcomes. In conclusion, we described a novel approach with fast implementation to model patients'' pain experience using electronic health records. In the era of big data science, clinical research should be learning from all available data regarding a patient''s episode of care instead of focusing on the "average" patient outcomes.

Questions about the HSR&D website? Email the Web Team.

Any health information on this website is strictly for informational purposes and is not intended as medical advice. It should not be used to diagnose or treat any condition.