Talk to the Veterans Crisis Line now
U.S. flag
An official website of the United States government

Health Services Research & Development

Veterans Crisis Line Badge
Go to the ORD website
Go to the QUERI website

HSR&D Citation Abstract

Search | Search by Center | Search by Source | Keywords in Title

Lai PTS, Wilson J, Wu H, Jones J, Dixon BE. Measuring and Visualizing Chlamydia and Gonorrhea Inequality: An Informatics Approach Using Geographical Information Systems. Online journal of public health informatics. 2019 Sep 19; 11(2):e8.
PubMed logo Search for Abstract from PubMed
(This link leaves the website of VA HSR&D.)

Abstract: Background: Health inequality measurements are vital in understanding disease patterns in identifying high-risk patients and implementing effective intervention programs to treat and manage sexually transmitted diseases. Objectives: To measure and identify inequalities among chlamydia and gonorrhea rates using Gini coefficient measurements and spatial visualization mapping from geographical information systems. Additionally, we seek to examine trends of disease rate distribution longitudinally over a ten-year period for an urbanized county. Methods: Chlamydia and gonorrhea data from January 2005 to December 2014 were collected from the Indiana Network for Patient Care, a health information exchange system that gathers patient data from electronic health records. The Gini coefficient was used to calculate the magnitude of inequality in disease rates. Spatial visualization mapping and decile categorization of disease rates were conducted to identify locations where high and low rates of disease persisted and to visualize differences in inequality. A multiple comparisons ANOVA test was conducted to determine if Gini coefficient values were statistically different between townships and time periods during the study. Results: Our analyses show that chlamydia and gonorrhea rates are not evenly distributed. Inequalities in disease rates existed for different areas of the county with higher disease rates occurring near the center of the county. Inequality in gonorrhea rates were higher than chlamydia rates. Disease rates were statistically different when geographical locations or townships were compared to each other (p < 0.0001) but not for different years or time periods (p = 0.5152). Conclusion: The ability to use Gini coefficients combined with spatial visualization techniques presented a valuable opportunity to analyze information from health information systems in investigating health inequalities. Knowledge from this study can benefit and improve health quality, delivery of services, and intervention programs while managing healthcare costs.

Questions about the HSR&D website? Email the Web Team.

Any health information on this website is strictly for informational purposes and is not intended as medical advice. It should not be used to diagnose or treat any condition.