Talk to the Veterans Crisis Line now
U.S. flag
An official website of the United States government

VA Health Systems Research

Go to the VA ORD website
Go to the QUERI website

HSR&D Citation Abstract

Search | Search by Center | Search by Source | Keywords in Title

Machine Learning Methods Predict Individual Upper-Limb Motor Impairment Following Therapy in Chronic Stroke.

Tozlu C, Edwards D, Boes A, Labar D, Tsagaris KZ, Silverstein J, Pepper Lane H, Sabuncu MR, Liu C, Kuceyeski A. Machine Learning Methods Predict Individual Upper-Limb Motor Impairment Following Therapy in Chronic Stroke. Neurorehabilitation and Neural Repair. 2020 May 1; 34(5):428-439.

Dimensions for VA is a web-based tool available to VA staff that enables detailed searches of published research and research projects.

If you have VA-Intranet access, click here for more information vaww.hsrd.research.va.gov/dimensions/

VA staff not currently on the VA network can access Dimensions by registering for an account using their VA email address.
   Search Dimensions for VA for this citation
* Don't have VA-internal network access or a VA email address? Try searching the free-to-the-public version of Dimensions



Abstract:

. Accurate prediction of clinical impairment in upper-extremity motor function following therapy in chronic stroke patients is a difficult task for clinicians but is key in prescribing appropriate therapeutic strategies. Machine learning is a highly promising avenue with which to improve prediction accuracy in clinical practice. . The objective was to evaluate the performance of 5 machine learning methods in predicting postintervention upper-extremity motor impairment in chronic stroke patients using demographic, clinical, neurophysiological, and imaging input variables. . A total of 102 patients (female: 31%, age 61 ± 11 years) were included. The upper-extremity Fugl-Meyer Assessment (UE-FMA) was used to assess motor impairment of the upper limb before and after intervention. Elastic net (EN), support vector machines, artificial neural networks, classification and regression trees, and random forest were used to predict postintervention UE-FMA. The performances of methods were compared using cross-validated . . EN performed significantly better than other methods in predicting postintervention UE-FMA using demographic and baseline clinical data (median < .05). Preintervention UE-FMA and the difference in motor threshold (MT) between the affected and unaffected hemispheres were the strongest predictors. The difference in MT had greater importance than the absence or presence of a motor-evoked potential (MEP) in the affected hemisphere. . Machine learning methods may enable clinicians to accurately predict a chronic stroke patient's postintervention UE-FMA. Interhemispheric difference in the MT is an important predictor of chronic stroke patients' response to therapy and, therefore, could be included in prospective studies.





Questions about the HSR website? Email the Web Team

Any health information on this website is strictly for informational purposes and is not intended as medical advice. It should not be used to diagnose or treat any condition.