Talk to the Veterans Crisis Line now
U.S. flag
An official website of the United States government

VA Health Systems Research

Go to the VA ORD website
Go to the QUERI website

HSR&D Citation Abstract

Search | Search by Center | Search by Source | Keywords in Title

Effect of Integrating Machine Learning Mortality Estimates With Behavioral Nudges to Clinicians on Serious Illness Conversations Among Patients With Cancer: A Stepped-Wedge Cluster Randomized Clinical Trial.

Manz CR, Parikh RB, Small DS, Evans CN, Chivers C, Regli SH, Hanson CW, Bekelman JE, Rareshide CAL, O'Connor N, Schuchter LM, Shulman LN, Patel MS. Effect of Integrating Machine Learning Mortality Estimates With Behavioral Nudges to Clinicians on Serious Illness Conversations Among Patients With Cancer: A Stepped-Wedge Cluster Randomized Clinical Trial. JAMA oncology. 2020 Dec 10; 6(12):e204759.

Dimensions for VA is a web-based tool available to VA staff that enables detailed searches of published research and research projects.

If you have VA-Intranet access, click here for more information vaww.hsrd.research.va.gov/dimensions/

VA staff not currently on the VA network can access Dimensions by registering for an account using their VA email address.
   Search Dimensions for VA for this citation
* Don't have VA-internal network access or a VA email address? Try searching the free-to-the-public version of Dimensions



Abstract:

Importance: Serious illness conversations (SICs) are structured conversations between clinicians and patients about prognosis, treatment goals, and end-of-life preferences. Interventions that increase the rate of SICs between oncology clinicians and patients may improve goal-concordant care and patient outcomes. Objective: To determine the effect of a clinician-directed intervention integrating machine learning mortality predictions with behavioral nudges on motivating clinician-patient SICs. Design, Setting, and Participants: This stepped-wedge cluster randomized clinical trial was conducted across 20 weeks (from June 17 to November 1, 2019) at 9 medical oncology clinics (8 subspecialty oncology and 1 general oncology clinics) within a large academic health system in Pennsylvania. Clinicians at the 2 smallest subspecialty clinics were grouped together, resulting in 8 clinic groups randomly assigned to the 4 intervention wedge periods. Included participants in the intention-to-treat analyses were 78 oncology clinicians who received SIC training and their patients (N? = 14?607) who had an outpatient oncology encounter during the study period. Interventions: (1) Weekly emails to oncology clinicians with SIC performance feedback and peer comparisons; (2) a list of up to 6 high-risk patients ( = 10% predicted risk of 180-day mortality) scheduled for the next week, estimated using a validated machine learning algorithm; and (3) opt-out text message prompts to clinicians on the patient's appointment day to consider an SIC. Clinicians in the control group received usual care consisting of weekly emails with cumulative SIC performance. Main Outcomes and Measures: Percentage of patient encounters with an SIC in the intervention group vs the usual care (control) group. Results: The sample consisted of 78 clinicians and 14?607 patients. The mean (SD) age of patients was 61.9 (14.2) years, 53.7% were female, and 70.4% were White. For all encounters, SICs were conducted among 1.3% in the control group and 4.6% in the intervention group, a significant difference (adjusted difference in percentage points, 3.3; 95% CI, 2.3-4.5; P? < .001). Among 4124 high-risk patient encounters, SICs were conducted among 3.6% in the control group and 15.2% in the intervention group, a significant difference (adjusted difference in percentage points, 11.6; 95% CI, 8.2-12.5; P? < .001). Conclusions and Relevance: In this stepped-wedge cluster randomized clinical trial, an intervention that delivered machine learning mortality predictions with behavioral nudges to oncology clinicians significantly increased the rate of SICs among all patients and among patients with high mortality risk who were targeted by the intervention. Behavioral nudges combined with machine learning mortality predictions can positively influence clinician behavior and may be applied more broadly to improve care near the end of life. Trial Registration: ClinicalTrials.gov Identifier: NCT03984773.





Questions about the HSR website? Email the Web Team

Any health information on this website is strictly for informational purposes and is not intended as medical advice. It should not be used to diagnose or treat any condition.