Talk to the Veterans Crisis Line now
U.S. flag
An official website of the United States government

Health Services Research & Development

Go to the ORD website
Go to the QUERI website

HSR&D Citation Abstract

Search | Search by Center | Search by Source | Keywords in Title

Can Machine Learning Methods Produce Accurate and Easy-to-Use Preoperative Prediction Models of One-Year Improvements in Pain and Functioning After Knee Arthroplasty?

Harris AHS, Kuo AC, Bowe TR, Manfredi L, Lalani NF, Giori NJ. Can Machine Learning Methods Produce Accurate and Easy-to-Use Preoperative Prediction Models of One-Year Improvements in Pain and Functioning After Knee Arthroplasty? The Journal of arthroplasty. 2021 Jan 1; 36(1):112-117.e6.

Related HSR&D Project(s)

Dimensions for VA is a web-based tool available to VA staff that enables detailed searches of published research and research projects.

If you have VA-Intranet access, click here for more information vaww.hsrd.research.va.gov/dimensions/

VA staff not currently on the VA network can access Dimensions by registering for an account using their VA email address.
   Search Dimensions for VA for this citation
* Don't have VA-internal network access or a VA email address? Try searching the free-to-the-public version of Dimensions



Abstract:

BACKGROUND: Approximately 15%-20% of total knee arthroplasty (TKA) patients do not experience clinically meaningful improvements. We sought to compare the accuracy and parsimony of several machine learning strategies for developing predictive models of failing to experience minimal clinically important differences in patient-reported outcome measures (PROMs) 1 year after TKA. METHODS: Patients (N  = 587) in 3 large Veteran Health Administration facilities completed PROMs before and 1 year after TKA (92% follow-up). Preoperative PROMs and electronic health record data were used to develop and validate models to predict failing to experience at least a minimal clinically important difference in Knee Injury and Osteoarthritis Outcome Score (KOOS) Total, KOOS JR, and KOOS subscales (Pain, Symptoms, Activities of Daily Living, Quality of Life, and recreation). Several machine learning strategies were used for model development. Ten-fold cross-validation and bootstrapping were used to produce measures of overall accuracy (C-statistic, Brier Score). The sensitivity and specificity of various predicted probability cut-points were examined. RESULTS: The most accurate models produced were for the Activities of Daily Living, Pain, Symptoms, and Quality of Life subscales of the KOOS (C-statistics 0.76, 0.72, 0.72, and 0.71, respectively). Strategies varied substantially in terms of the numbers of inputs required to achieve similar accuracy, with none being superior for all outcomes. CONCLUSION: Models produced in this project provide estimates of patient-specific improvements in major outcomes 1 year after TKA. Integrating these models into clinical decision support, informed consent and shared decision making could improve patient selection, education, and satisfaction. LEVEL OF EVIDENCE: Level III, diagnostic study.





Questions about the HSR&D website? Email the Web Team.

Any health information on this website is strictly for informational purposes and is not intended as medical advice. It should not be used to diagnose or treat any condition.