Talk to the Veterans Crisis Line now
U.S. flag
An official website of the United States government

Health Services Research & Development

Go to the ORD website
Go to the QUERI website

HSR&D Citation Abstract

Search | Search by Center | Search by Source | Keywords in Title

Automated Measurements of Body Composition in Abdominal CT Scans Using Artificial Intelligence Can Predict Mortality in Patients With Cirrhosis.

Zou WY, Enchakalody BE, Zhang P, Shah N, Saini SD, Wang NC, Wang SC, Su GL. Automated Measurements of Body Composition in Abdominal CT Scans Using Artificial Intelligence Can Predict Mortality in Patients With Cirrhosis. Hepatology communications. 2021 Nov 1; 5(11):1901-1910.

Dimensions for VA is a web-based tool available to VA staff that enables detailed searches of published research and research projects.

If you have VA-Intranet access, click here for more information vaww.hsrd.research.va.gov/dimensions/

VA staff not currently on the VA network can access Dimensions by registering for an account using their VA email address.
   Search Dimensions for VA for this citation
* Don't have VA-internal network access or a VA email address? Try searching the free-to-the-public version of Dimensions



Abstract:

Body composition measures derived from already available electronic medical records (computed tomography [CT] scans) can have significant value, but automation of measurements is needed for clinical implementation. We sought to use artificial intelligence to develop an automated method to measure body composition and test the algorithm on a clinical cohort to predict mortality. We constructed a deep learning algorithm using Google''s DeepLabv3+ on a cohort of de-identified CT scans (n  =  12,067). To test for the accuracy and clinical usefulness of the algorithm, we used a unique cohort of prospectively followed patients with cirrhosis (n  =  238) who had CT scans performed. To assess model performance, we used the confusion matrix and calculated the mean accuracy of 0.977 ± 0.02 (0.975 ± 0.018 for the training and test sets, respectively). To assess for spatial overlap, we measured the mean intersection over union and mean boundary contour scores and found excellent overlap between the manual and automated methods with mean scores of 0.954 ± 0.030, 0.987 ± 0.009, and 0.948 ± 0.039 (0.983 ± 0.013 for the training and test set, respectively). Using these automated measurements, we found that body composition features were predictive of mortality in patients with cirrhosis. On multivariate analysis, the addition of body composition measures significantly improved prediction of mortality for patients with cirrhosis over Model for End-Stage Liver Disease alone (P  <  0.001). Conclusion: The measurement of body composition can be automated using artificial intelligence and add significant value for incidental CTs performed for other clinical indications. This is proof of concept that this methodology could allow for wider implementation into the clinical arena.





Questions about the HSR&D website? Email the Web Team.

Any health information on this website is strictly for informational purposes and is not intended as medical advice. It should not be used to diagnose or treat any condition.