Talk to the Veterans Crisis Line now
U.S. flag
An official website of the United States government

VA Health Systems Research

Go to the VA ORD website
Go to the QUERI website

HSR&D Citation Abstract

Search | Search by Center | Search by Source | Keywords in Title

Proteomic profiling reveals biomarkers and pathways in type 2 diabetes risk.

Ngo D, Benson MD, Long JZ, Chen ZZ, Wang R, Nath AK, Keyes MJ, Shen D, Sinha S, Kuhn E, Morningstar JE, Shi X, Peterson BD, Chan C, Katz DH, Tahir UA, Farrell LA, Melander O, Mosley JD, Carr SA, Vasan RS, Larson MG, Smith JG, Wang TJ, Yang Q, Gerszten RE. Proteomic profiling reveals biomarkers and pathways in type 2 diabetes risk. JCI insight. 2021 Mar 8; 6(5).

Dimensions for VA is a web-based tool available to VA staff that enables detailed searches of published research and research projects.

If you have VA-Intranet access, click here for more information vaww.hsrd.research.va.gov/dimensions/

VA staff not currently on the VA network can access Dimensions by registering for an account using their VA email address.
   Search Dimensions for VA for this citation
* Don't have VA-internal network access or a VA email address? Try searching the free-to-the-public version of Dimensions



Abstract:

Recent advances in proteomic technologies have made high-throughput profiling of low-abundance proteins in large epidemiological cohorts increasingly feasible. We investigated whether aptamer-based proteomic profiling could identify biomarkers associated with future development of type 2 diabetes (T2DM) beyond known risk factors. We identified dozens of markers with highly significant associations with future T2DM across 2 large longitudinal cohorts (n = 2839) followed for up to 16 years. We leveraged proteomic, metabolomic, genetic, and clinical data from humans to nominate 1 specific candidate to test for potential causal relationships in model systems. Our studies identified functional effects of aminoacylase 1 (ACY1), a top protein association with future T2DM risk, on amino acid metabolism and insulin homeostasis in vitro and in vivo. Furthermore, a loss-of-function variant associated with circulating levels of the biomarker WAP, Kazal, immunoglobulin, Kunitz, and NTR domain-containing protein 2 (WFIKKN2) was, in turn, associated with fasting glucose, hemoglobin A1c, and HOMA-IR measurements in humans. In addition to identifying potentially novel disease markers and pathways in T2DM, we provide publicly available data to be leveraged for insights about gene function and disease pathogenesis in the context of human metabolism.





Questions about the HSR website? Email the Web Team

Any health information on this website is strictly for informational purposes and is not intended as medical advice. It should not be used to diagnose or treat any condition.