Talk to the Veterans Crisis Line now
U.S. flag
An official website of the United States government

VA Health Systems Research

Go to the VA ORD website
Go to the QUERI website

HSR Citation Abstract

Search | Search by Center | Search by Source | Keywords in Title

Identification of Multimorbidity Patterns in Rheumatoid Arthritis Through Machine Learning.

England BR, Yang Y, Roul P, Haas C, Najjar L, Sayles H, Yu F, Sauer BC, Baker JF, Xie F, Michaud K, Curtis JR, Mikuls TR. Identification of Multimorbidity Patterns in Rheumatoid Arthritis Through Machine Learning. Arthritis care & research. 2023 Feb 1; 75(2):220-230.

Dimensions for VA is a web-based tool available to VA staff that enables detailed searches of published research and research projects.

If you have VA-Intranet access, click here for more information

VA staff not currently on the VA network can access Dimensions by registering for an account using their VA email address.
   Search Dimensions for VA for this citation
* Don't have VA-internal network access or a VA email address? Try searching the free-to-the-public version of Dimensions


OBJECTIVE: Recognizing that the interrelationships between chronic conditions that complicate rheumatoid arthritis (RA) are poorly understood, we aimed to identify patterns of multimorbidity and to define their prevalence in RA through machine learning. METHODS: We constructed RA and age- and sex-matched (1:1) non-RA cohorts within a large commercial insurance database (MarketScan) and the Veterans Health Administration (VHA). Chronic conditions (n  =  44) were identified from diagnosis codes from outpatient and inpatient encounters. Exploratory factor analysis was performed separately in both databases, stratified by RA diagnosis and sex, to identify multimorbidity patterns. The association of RA with different multimorbidity patterns was determined using conditional logistic regression. RESULTS: We studied 226,850 patients in MarketScan (76% female) and 120,780 patients in the VHA (89% male). The primary multimorbidity patterns identified were characterized by the presence of cardiopulmonary, cardiometabolic, and mental health and chronic pain disorders. Multimorbidity patterns were similar between RA and non-RA patients, female and male patients, and patients in MarketScan and the VHA. RA patients had higher odds of each multimorbidity pattern (odds ratios [ORs] 1.17-2.96), with mental health and chronic pain disorders being the multimorbidity pattern most strongly associated with RA (ORs 2.07-2.96). CONCLUSION: Cardiopulmonary, cardiometabolic, and mental health and chronic pain disorders represent predominant multimorbidity patterns, each of which is overrepresented in RA. The identification of multimorbidity patterns occurring more frequently in RA is an important first step in progressing toward a holistic approach to RA management and warrants assessment of their clinical and predictive utility.

Questions about the HSR website? Email the Web Team

Any health information on this website is strictly for informational purposes and is not intended as medical advice. It should not be used to diagnose or treat any condition.