Talk to the Veterans Crisis Line now
U.S. flag
An official website of the United States government

VA Health Systems Research

Go to the VA ORD website
Go to the QUERI website

HSR&D Citation Abstract

Search | Search by Center | Search by Source | Keywords in Title

Performance of Cardiovascular Risk Prediction Models Among People Living With HIV: A Systematic Review and Meta-analysis.

Soares C, Kwok M, Boucher KA, Haji M, Echouffo-Tcheugui JB, Longenecker CT, Bloomfield GS, Ross D, Jutkowtiz E, Sullivan JL, Rudolph JL, Wu WC, Erqou S. Performance of Cardiovascular Risk Prediction Models Among People Living With HIV: A Systematic Review and Meta-analysis. JAMA cardiology. 2023 Feb 1; 8(2):139-149.

Dimensions for VA is a web-based tool available to VA staff that enables detailed searches of published research and research projects.

If you have VA-Intranet access, click here for more information

VA staff not currently on the VA network can access Dimensions by registering for an account using their VA email address.
   Search Dimensions for VA for this citation
* Don't have VA-internal network access or a VA email address? Try searching the free-to-the-public version of Dimensions


IMPORTANCE: Extant data on the performance of cardiovascular disease (CVD) risk score models in people living with HIV have not been synthesized. OBJECTIVE: To synthesize available data on the performance of the various CVD risk scores in people living with HIV. DATA SOURCES: PubMed and Embase were searched from inception through January 31, 2021. STUDY SELECTION: Selected studies (1) were chosen based on cohort design, (2) included adults with a diagnosis of HIV, (3) assessed CVD outcomes, and (4) had available data on a minimum of 1 CVD risk score. DATA EXTRACTION AND SYNTHESIS: Relevant data related to study characteristics, CVD outcome, and risk prediction models were extracted in duplicate. Measures of calibration and discrimination are presented in tables and qualitatively summarized. Additionally, where possible, estimates of discrimination and calibration measures were combined and stratified by type of risk model. MAIN OUTCOMES AND MEASURES: Measures of calibration and discrimination. RESULTS: Nine unique observational studies involving 75?304 people (weighted average age, 42 years; 59?490 male individuals [79%]) living with HIV were included. In the studies reporting these data, 86% were receiving antiretroviral therapy and had a weighted average CD4+?count of 449 cells/┬ÁL. Included in the study were current smokers (50%), patients with diabetes (5%), and patients with hypertension (25%). Ten risk prediction scores (6 in the general population and 4 in the HIV-specific population) were analyzed. Most risk scores had a moderate performance in discrimination (C statistic: 0.7-0.8), without a significant difference in performance between the risk scores of the general and HIV-specific populations. One of the HIV-specific risk models (Data Collection on Adverse Effects of Anti-HIV Drugs Cohort 2016) and 2 of the general population risk models (Framingham Risk Score [FRS] and Pooled Cohort Equation [PCE] 10 year) had the highest performance in discrimination. In general, models tended to underpredict CVD risk, except for FRS and PCE 10-year scores, which were better calibrated. There was substantial heterogeneity across the studies, with only a few studies contributing data for each risk score. CONCLUSIONS AND RELEVANCE: Results of this systematic review and meta-analysis suggest that general population and HIV-specific CVD risk models had comparable, moderate discrimination ability in people living with HIV, with a general tendency to underpredict risk. These results reinforce the current recommendations provided by the American College of Cardiology/American Heart Association guidelines to consider HIV as a risk-enhancing factor when estimating CVD risk.

Questions about the HSR website? Email the Web Team

Any health information on this website is strictly for informational purposes and is not intended as medical advice. It should not be used to diagnose or treat any condition.