skip to page content
Talk to the Veterans Crisis Line now
U.S. flag
An official website of the United States government

Health Services Research & Development

Go to the ORD website
Go to the QUERI website

HSR&D Citation Abstract

Search | Search by Center | Search by Source | Keywords in Title

Enhancing Clinical Data Analysis by Explaining Interaction Effects between Covariates in Deep Neural Network Models.

Shao Y, Ahmed A, Zamrini EY, Cheng Y, Goulet JL, Zeng-Treitler Q. Enhancing Clinical Data Analysis by Explaining Interaction Effects between Covariates in Deep Neural Network Models. Journal of personalized medicine. 2023 Jan 26; 13(2).

Related HSR&D Project(s)

Dimensions for VA is a web-based tool available to VA staff that enables detailed searches of published research and research projects.

If you have VA-Intranet access, click here for more information

VA staff not currently on the VA network can access Dimensions by registering for an account using their VA email address.
   Search Dimensions for VA for this citation
* Don't have VA-internal network access or a VA email address? Try searching the free-to-the-public version of Dimensions


Deep neural network (DNN) is a powerful technology that is being utilized by a growing number and range of research projects, including disease risk prediction models. One of the key strengths of DNN is its ability to model non-linear relationships, which include covariate interactions. We developed a novel method called interaction scores for measuring the covariate interactions captured by DNN models. As the method is model-agnostic, it can also be applied to other types of machine learning models. It is designed to be a generalization of the coefficient of the interaction term in a logistic regression; hence, its values are easily interpretable. The interaction score can be calculated at both an individual level and population level. The individual-level score provides an individualized explanation for covariate interactions. We applied this method to two simulated datasets and a real-world clinical dataset on Alzheimer's disease and related dementia (ADRD). We also applied two existing interaction measurement methods to those datasets for comparison. The results on the simulated datasets showed that the interaction score method can explain the underlying interaction effects, there are strong correlations between the population-level interaction scores and the ground truth values, and the individual-level interaction scores vary when the interaction was designed to be non-uniform. Another validation of our new method is that the interactions discovered from the ADRD data included both known and novel relationships.

Questions about the HSR&D website? Email the Web Team

Any health information on this website is strictly for informational purposes and is not intended as medical advice. It should not be used to diagnose or treat any condition.