Talk to the Veterans Crisis Line now
U.S. flag
An official website of the United States government

VA Health Systems Research

Go to the VA ORD website
Go to the QUERI website

HSR&D Citation Abstract

Search | Search by Center | Search by Source | Keywords in Title

Identifying suicide documentation in clinical notes through zero-shot learning.

Workman TE, Goulet JL, Brandt CA, Warren AR, Eleazer J, Skanderson M, Lindemann L, Blosnich JR, O'Leary J, Zeng-Treitler Q. Identifying suicide documentation in clinical notes through zero-shot learning. Health science reports. 2023 Sep 1; 6(9):e1526.

Related HSR&D Project(s)

Dimensions for VA is a web-based tool available to VA staff that enables detailed searches of published research and research projects.

If you have VA-Intranet access, click here for more information

VA staff not currently on the VA network can access Dimensions by registering for an account using their VA email address.
   Search Dimensions for VA for this citation
* Don't have VA-internal network access or a VA email address? Try searching the free-to-the-public version of Dimensions


BACKGROUND AND AIMS: In deep learning, a major difficulty in identifying suicidality and its risk factors in clinical notes is the lack of training samples given the small number of true positive instances among the number of patients screened. This paper describes a novel methodology that identifies suicidality in clinical notes by addressing this data sparsity issue through zero-shot learning. Our general aim was to develop a tool that leveraged zero-shot learning to effectively identify suicidality documentation in all types of clinical notes. METHODS: US Veterans Affairs clinical notes served as data. The training data set label was determined using diagnostic codes of suicide attempt and self-harm. We used a base string associated with the target label of suicidality to provide auxiliary information by narrowing the positive training cases to those containing the base string. We trained a deep neural network by mapping the training documents'' contents to a semantic space. For comparison, we trained another deep neural network using the identical training data set labels, and bag-of-words features. RESULTS: The zero-shot learning model outperformed the baseline model in terms of area under the curve, sensitivity, specificity, and positive predictive value at multiple probability thresholds. In applying a 0.90 probability threshold, the methodology identified notes documenting suicidality but not associated with a relevant ICD-10-CM code, with 94% accuracy. CONCLUSION: This method can effectively identify suicidality without manual annotation.

Questions about the HSR website? Email the Web Team

Any health information on this website is strictly for informational purposes and is not intended as medical advice. It should not be used to diagnose or treat any condition.