Talk to the Veterans Crisis Line now
U.S. flag
An official website of the United States government

VA Health Systems Research

Go to the VA ORD website
Go to the QUERI website

HSR Citation Abstract

Search | Search by Center | Search by Source | Keywords in Title

Artificial intelligence predictive analytics in heart failure: results of the pilot phase of a pragmatic randomized clinical trial.

Sideris K, Weir CR, Schmalfuss C, Hanson H, Pipke M, Tseng PH, Lewis N, Sallam K, Bozkurt B, Hanff T, Schofield R, Larimer K, Kyriakopoulos CP, Taleb I, Brinker L, Curry T, Knecht C, Butler JM, Stehlik J. Artificial intelligence predictive analytics in heart failure: results of the pilot phase of a pragmatic randomized clinical trial. Journal of the American Medical Informatics Association : JAMIA. 2024 Apr 3; 31(4):919-928.

Dimensions for VA is a web-based tool available to VA staff that enables detailed searches of published research and research projects.

If you have VA-Intranet access, click here for more information vaww.hsrd.research.va.gov/dimensions/

VA staff not currently on the VA network can access Dimensions by registering for an account using their VA email address.
   Search Dimensions for VA for this citation
* Don't have VA-internal network access or a VA email address? Try searching the free-to-the-public version of Dimensions



Abstract:

OBJECTIVES: We conducted an implementation planning process during the pilot phase of a pragmatic trial, which tests an intervention guided by artificial intelligence (AI) analytics sourced from noninvasive monitoring data in heart failure patients (LINK-HF2). MATERIALS AND METHODS: A mixed-method analysis was conducted at 2 pilot sites. Interviews were conducted with 12 of 27 enrolled patients and with 13 participating clinicians. iPARIHS constructs were used for interview construction to identify workflow, communication patterns, and clinician's beliefs. Interviews were transcribed and analyzed using inductive coding protocols to identify key themes. Behavioral response data from the AI-generated notifications were collected. RESULTS: Clinicians responded to notifications within 24 hours in 95% of instances, with 26.7% resulting in clinical action. Four implementation themes emerged: (1) High anticipatory expectations for reliable patient communications, reduced patient burden, and less proactive provider monitoring. (2) The AI notifications required a differential and tailored balance of trust and action advice related to role. (3) Clinic experience with other home-based programs influenced utilization. (4) Responding to notifications involved significant effort, including electronic health record (EHR) review, patient contact, and consultation with other clinicians. DISCUSSION: Clinician's use of AI data is a function of beliefs regarding the trustworthiness and usefulness of the data, the degree of autonomy in professional roles, and the cognitive effort involved. CONCLUSION: The implementation planning analysis guided development of strategies that addressed communication technology, patient education, and EHR integration to reduce clinician and patient burden in the subsequent main randomized phase of the trial. Our results provide important insights into the unique implications of implementing AI analytics into clinical workflow.





Questions about the HSR website? Email the Web Team

Any health information on this website is strictly for informational purposes and is not intended as medical advice. It should not be used to diagnose or treat any condition.