Talk to the Veterans Crisis Line now
U.S. flag
An official website of the United States government

VA Health Systems Research

Go to the VA ORD website
Go to the QUERI website

HSR Citation Abstract

Search | Search by Center | Search by Source | Keywords in Title

Design and development of a machine-learning-driven opioid overdose risk prediction tool integrated in electronic health records in primary care settings.

Nguyen, Wilson, Diiulio, Hall, Militello, Gellad, Harle, Lewis, Schmidt, Rosenberg, Nelson, He, Wu, Bian, Staras, Gordon, Cochran, Kuza, Yang, Lo-Ciganic. Design and development of a machine-learning-driven opioid overdose risk prediction tool integrated in electronic health records in primary care settings. Bioelectronic medicine. 2024 Oct 18; 10(1):24, DOI: 10.1186/s42234-024-00156-3.

Dimensions for VA is a web-based tool available to VA staff that enables detailed searches of published research and research projects.

If you have VA-Intranet access, click here for more information vaww.hsrd.research.va.gov/dimensions/

VA staff not currently on the VA network can access Dimensions by registering for an account using their VA email address.
   Search Dimensions for VA for this citation
* Don't have VA-internal network access or a VA email address? Try searching the free-to-the-public version of Dimensions



Abstract:

BACKGROUND: Integrating advanced machine-learning (ML) algorithms into clinical practice is challenging and requires interdisciplinary collaboration to develop transparent, interpretable, and ethically sound clinical decision support (CDS) tools. We aimed to design a ML-driven CDS tool to predict opioid overdose risk and gather feedback for its integration into the University of Florida Health (UFHealth) electronic health record (EHR) system. METHODS: We used user-centered design methods to integrate the ML algorithm into the EHR system. The backend and UI design sub-teams collaborated closely, both informed by user feedback sessions. We conducted seven user feedback sessions with five UF Health primary care physicians (PCPs) to explore aspects of CDS tools, including workflow, risk display, and risk mitigation strategies. After customizing the tool based on PCPs'' feedback, we held two rounds of one-on-one usability testing sessions with 8 additional PCPs to gather feedback on prototype alerts. These sessions informed iterative UI design and backend processes, including alert frequency and reappearance circumstances. RESULTS: The backend process development identified needs and requirements from our team, information technology, UFHealth, and PCPs. Thirteen PCPs (male  =  62%, White  =  85%) participated across 7 user feedback sessions and 8 usability testing sessions. During the user feedback sessions, PCPs (n  =  5) identified flaws such as the term "high risk" of overdose potentially leading to unintended consequences (e.g., immediate addiction services referrals), offered suggestions, and expressed trust in the tool. In the first usability testing session, PCPs (n  =  4) emphasized the need for natural risk presentation (e.g., 1 in 200) and suggested displaying the alert multiple times yearly for at-risk patients. Another 4 PCPs in the second usability testing session valued the UFHealth-specific alert for managing new or unfamiliar patients, expressed concerns about PCPs'' workload when prescribing to high-risk patients, and recommended incorporating the details page into training sessions to enhance usability. CONCLUSIONS: The final backend process for our CDS alert aligns with PCP needs and UFHealth standards. Integrating feedback from PCPs in the early development phase of our ML-driven CDS tool helped identify barriers and facilitators in the CDS integration process. This collaborative approach yielded a refined prototype aimed at minimizing unintended consequences and enhancing usability.





Questions about the HSR website? Email the Web Team

Any health information on this website is strictly for informational purposes and is not intended as medical advice. It should not be used to diagnose or treat any condition.