Talk to the Veterans Crisis Line now
U.S. flag
An official website of the United States government

VA Health Systems Research

Go to the VA ORD website
Go to the QUERI website

HSR&D Citation Abstract

Search | Search by Center | Search by Source | Keywords in Title

Safety profiles and lesion size of different radiofrequency ablation technologies: a comparison of large tip, open and closed irrigation catheters.

Lee KW, Everett TH, Wilson EE, Guerra JM, Varosy PD, Olgin JE. Safety profiles and lesion size of different radiofrequency ablation technologies: a comparison of large tip, open and closed irrigation catheters. Journal of Cardiovascular Electrophysiology. 2009 Mar 1; 20(3):325-35.

Dimensions for VA is a web-based tool available to VA staff that enables detailed searches of published research and research projects.

If you have VA-Intranet access, click here for more information vaww.hsrd.research.va.gov/dimensions/

VA staff not currently on the VA network can access Dimensions by registering for an account using their VA email address.
   Search Dimensions for VA for this citation
* Don't have VA-internal network access or a VA email address? Try searching the free-to-the-public version of Dimensions



Abstract:

INTRODUCTION: Different technologies have been developed for radiofrequency ablation (RFA), which include increasing electrode (tip) size and cooling the tip through irrigation either internally (closed-loop) with D5W or externally (open-loop) with saline. Although these catheters are widely used clinically, the propensity for adverse events and the lesion profiles of each of these catheter technologies have not been directly compared under a wide range of controlled conditions. METHODS AND RESULTS: Freshly excised canine thigh muscle was placed in a chamber filled with circulating, heparinized blood heated to 37 degrees C. Five different catheters were tested: 4 mm tip, 10 mm tip single thermistor, 10 mm tip multitemperature sensor, 4 mm closed-loop irrigated cooled-tip, and 4 mm open-loop irrigated cooled tip at several different contact and power settings. The catheter and tissue interface was continuously monitored with intracardiac echocardiography (echo) (Acuson). During the RFA, any bubbling generated from the tip and/or popping seen on echo was noted, and after each RFA, the catheter and lesion were examined for the presence of thrombus. For all of the catheters, complications correlated to the electrode tip temperature and power setting. All of the catheters experienced complications at any lesion size except for the open-irrigated catheter, which only had complications at the largest lesions. Overall, the cooled tip catheters experienced an at least sixfold greater odds of popping, bubbling, and impedance rises than the 4 mm, but the majority occurred at power levels greater than 20 W. The open-irrigated catheters created eccentric lesions that extended away from the tissue-catheter interface, in the direction of blood flow. In addition, it produced saline filled blisters at the lesion site in 16.7% of the burns. The 10 mm catheter had an at least twofold greater odds of thrombus, charring, and bubbling, but larger lesions than the 10 mm multitemperature sensor catheter. CONCLUSIONS: Catheter type, contact conditions, and power settings all play a role in lesion size and in the frequency of complications that occur during an RFA. Cooling the electrode tip, either internally or externally, does not prevent complications from occurring, especially at the higher power control settings. Adding more temperature sensors to the 10 mm seems to reduce the amount of complications that can occur.





Questions about the HSR website? Email the Web Team

Any health information on this website is strictly for informational purposes and is not intended as medical advice. It should not be used to diagnose or treat any condition.