Talk to the Veterans Crisis Line now
U.S. flag
An official website of the United States government

Health Services Research & Development

Go to the ORD website
Go to the QUERI website

HSR&D Citation Abstract

Search | Search by Center | Search by Source | Keywords in Title

Developing indicators of inpatient adverse drug events through nonlinear analysis using administrative data.

Nebeker JR, Yarnold PR, Soltysik RC, Sauer BC, Sims SA, Samore MH, Rupper RW, Swanson KM, Savitz LA, Shinogle J, Xu W. Developing indicators of inpatient adverse drug events through nonlinear analysis using administrative data. Medical care. 2007 Oct 1; 45(10 Supl 2):S81-8.

Dimensions for VA is a web-based tool available to VA staff that enables detailed searches of published research and research projects.

If you have VA-Intranet access, click here for more information vaww.hsrd.research.va.gov/dimensions/

VA staff not currently on the VA network can access Dimensions by registering for an account using their VA email address.
   Search Dimensions for VA for this citation
* Don't have VA-internal network access or a VA email address? Try searching the free-to-the-public version of Dimensions



Abstract:

BACKGROUND: Because of uniform availability, hospital administrative data are appealing for surveillance of adverse drug events (ADEs). Expert-generated surveillance rules that rely on the presence of International Classification of Diseases, 9th Revision Clinical Modification (ICD-9-CM) codes have limited accuracy. Rules based on nonlinear associations among all types of available administrative data may be more accurate. OBJECTIVES: By applying hierarchically optimal classification tree analysis (HOCTA) to administrative data, derive and validate surveillance rules for bleeding/anticoagulation problems and delirium/psychosis. RESEARCH DESIGN: Retrospective cohort design. SUBJECTS: A random sample of 3987 admissions drawn from all 41 Utah acute-care hospitals in 2001 and 2003. MEASURES: Professional nurse reviewers identified ADEs using implicit chart review. Pharmacists assigned Medical Dictionary for Regulatory Activities codes to ADE descriptions for identification of clinical groups of events. Hospitals provided patient demographic, admission, and ICD9-CM data. RESULTS: Incidence proportions were 0.8% for drug-induced bleeding/anticoagulation problems and 1.0% for drug-induced delirium/psychosis. The model for bleeding had very good discrimination and sensitivity at 0.87 and 86% and fair positive predictive value (PPV) at 12%. The model for delirium had excellent sensitivity at 94%, good discrimination at 0.83, but low PPV at 3%. Poisoning and adverse event codes designed for the targeted ADEs had low sensitivities and, when forced in, degraded model accuracy. CONCLUSIONS: Hierarchically optimal classification tree analysis is a promising method for rapidly developing clinically meaningful surveillance rules for administrative data. The resultant model for drug-induced bleeding and anticoagulation problems may be useful for retrospective ADE screening and rate estimation.





Questions about the HSR&D website? Email the Web Team.

Any health information on this website is strictly for informational purposes and is not intended as medical advice. It should not be used to diagnose or treat any condition.