Talk to the Veterans Crisis Line now
U.S. flag
An official website of the United States government

Health Services Research & Development

Go to the ORD website
Go to the QUERI website

HSR&D Citation Abstract

Search | Search by Center | Search by Source | Keywords in Title

Random effects models for assessing diagnostic accuracy of traditional Chinese doctors in absence of a gold standard.

Wang Z, Zhou XH. Random effects models for assessing diagnostic accuracy of traditional Chinese doctors in absence of a gold standard. Statistics in medicine. 2012 Mar 30; 31(7):661-71.

Related HSR&D Project(s)

Dimensions for VA is a web-based tool available to VA staff that enables detailed searches of published research and research projects.

If you have VA-Intranet access, click here for more information vaww.hsrd.research.va.gov/dimensions/

VA staff not currently on the VA network can access Dimensions by registering for an account using their VA email address.
   Search Dimensions for VA for this citation
* Don't have VA-internal network access or a VA email address? Try searching the free-to-the-public version of Dimensions



Abstract:

Two common problems in assessing the accuracy of traditional Chinese medicine (TCM) doctors in detecting a particular symptom are the unknown true symptom status and the ordinal-scale of the symptom status. Wang et al. (Biostatistics 2011; DOI: 10.1093/biostatistics/kxq075) proposed a nonparametric maximum likelihood method for estimating the accuracy of different TCM doctors without a gold standard when the true symptom status is measured on an ordinal-scale. A key assumption of their work is that the diagnosis results are independent conditional on the gold standard. This assumption can be violated in many practical situations.In this paper, we propose a random effects modeling approach that extends their method to incorporate dependence structure among different tests or doctors. The proposed method is illustrated on a real data set from TCM, which contains the diagnostic results from five doctors for the same patients regarding symptoms related to Chills disease. The same data set was analyzed by Wang et al. under the conditional independence assumption. In addition, we also discuss an ad hoc test for the model fitting and a likelihood ratio test on the random effects.





Questions about the HSR&D website? Email the Web Team.

Any health information on this website is strictly for informational purposes and is not intended as medical advice. It should not be used to diagnose or treat any condition.