Talk to the Veterans Crisis Line now
U.S. flag
An official website of the United States government

VA Health Systems Research

Go to the VA ORD website
Go to the QUERI website

HSR&D Citation Abstract

Search | Search by Center | Search by Source | Keywords in Title

Segmental analysis of carotid arterial strain using speckle-tracking.

Yang EY, Dokainish H, Virani SS, Misra A, Pritchett AM, Lakkis N, Brunner G, Bobek J, McCulloch ML, Hartley CJ, Ballantyne CM, Nagueh SF, Nambi V. Segmental analysis of carotid arterial strain using speckle-tracking. Journal of the American Society of Echocardiography : official publication of the American Society of Echocardiography. 2011 Nov 1; 24(11):1276-1284.e5.

Dimensions for VA is a web-based tool available to VA staff that enables detailed searches of published research and research projects.

If you have VA-Intranet access, click here for more information vaww.hsrd.research.va.gov/dimensions/

VA staff not currently on the VA network can access Dimensions by registering for an account using their VA email address.
   Search Dimensions for VA for this citation
* Don't have VA-internal network access or a VA email address? Try searching the free-to-the-public version of Dimensions



Abstract:

BACKGROUND: Increased arterial stiffness has been shown to be associated with aging and cardiovascular risk factors. Speckle-tracking algorithms are being used to measure myocardial strain. The aims of this study were to evaluate whether speckle-tracking could be used to measure carotid arterial strain (CAS) reproducibly in healthy volunteers and to determine if CAS was lesser in individuals with diabetes. METHODS: Bilateral electrocardiographically gated ultrasound scans of the distal common carotid arteries (three cardiac cycles; 14-MHz linear probe; mean frame rate, 78.7 ± 8.9 frames/sec) were performed twice (2-4 days apart) on 10 healthy volunteers to test repeatability. Differences in CAS between healthy subjects (n  = 20) and patients with diabetes (n  = 21) were examined. Peak CAS was measured in each of six equal segments, and averages of all segments (i.e., the global average), of the three segments nearest the probe, and of the three segments farthest from the probe (i.e., the far wall average) were obtained. RESULTS: Global CAS (intraclass correlation coefficient  = 0.40) and far wall average (intraclass correlation coefficient  = 0.63) had the greatest test-retest reliability. Global and far wall averaged CAS values were lower in patients with diabetes (4.29% [SE, 0.27%] and 4.30% [SE, 0.44%], respectively) than in controls (5.48% [SE, 0.29%], P  = .001, and 5.58% [SE, 0.44%], P  = .003, respectively). This difference persisted after adjustment for age, gender, race, and hemodynamic parameters. CONCLUSIONS: Speckle-tracking to measure CAS is feasible and modestly reliable. Patients with diabetes had lower CAS obtained with speckle-tracking compared with healthy controls.





Questions about the HSR website? Email the Web Team

Any health information on this website is strictly for informational purposes and is not intended as medical advice. It should not be used to diagnose or treat any condition.