skip to page content
Talk to the Veterans Crisis Line now
U.S. flag
An official website of the United States government

Health Services Research & Development

Go to the ORD website
Go to the QUERI website

HSR&D Citation Abstract

Search | Search by Center | Search by Source | Keywords in Title

A latent-variable marginal method for multi-level incomplete binary data.

Chen B, Zhou XH. A latent-variable marginal method for multi-level incomplete binary data. Statistics in medicine. 2012 Nov 20; 31(26):3211-22.

Related HSR&D Project(s)

Dimensions for VA is a web-based tool available to VA staff that enables detailed searches of published research and research projects.

If you have VA-Intranet access, click here for more information

VA staff not currently on the VA network can access Dimensions by registering for an account using their VA email address.
   Search Dimensions for VA for this citation
* Don't have VA-internal network access or a VA email address? Try searching the free-to-the-public version of Dimensions


Incomplete multi-level data arise commonly in many clinical trials and observational studies. Because of multi-level variations in this type of data, appropriate data analysis should take these variations into account. A random effects model can allow for the multi-level variations by assuming random effects at each level, but the computation is intensive because high-dimensional integrations are often involved in fitting models. Marginal methods such as the inverse probability weighted generalized estimating equations can involve simple estimation computation, but it is hard to specify the working correlation matrix for multi-level data. In this paper, we introduce a latent variable method to deal with incomplete multi-level data when the missing mechanism is missing at random, which fills the gap between the random effects model and marginal models. Latent variable models are built for both the response and missing data processes to incorporate the variations that arise at each level. Simulation studies demonstrate that this method performs well in various situations. We apply the proposed method to an Alzheimer''s disease study.

Questions about the HSR&D website? Email the Web Team

Any health information on this website is strictly for informational purposes and is not intended as medical advice. It should not be used to diagnose or treat any condition.