Talk to the Veterans Crisis Line now
U.S. flag
An official website of the United States government

VA Health Systems Research

Go to the VA ORD website
Go to the QUERI website

HSR Citation Abstract

Search | Search by Center | Search by Source | Keywords in Title

Detection of infectious symptoms from VA emergency department and primary care clinical documentation.

Matheny ME, Fitzhenry F, Speroff T, Green JK, Griffith ML, Vasilevskis EE, Fielstein EM, Elkin PL, Brown SH. Detection of infectious symptoms from VA emergency department and primary care clinical documentation. International journal of medical informatics. 2012 Mar 1; 81(3):143-56.

Dimensions for VA is a web-based tool available to VA staff that enables detailed searches of published research and research projects.

If you have VA-Intranet access, click here for more information

VA staff not currently on the VA network can access Dimensions by registering for an account using their VA email address.
   Search Dimensions for VA for this citation
* Don't have VA-internal network access or a VA email address? Try searching the free-to-the-public version of Dimensions


OBJECTIVE: The majority of clinical symptoms are stored as free text in the clinical record, and this information can inform clinical decision support and automated surveillance efforts if it can be accurately processed into computer interpretable data. METHODS: We developed rule-based algorithms and evaluated a natural language processing (NLP) system for infectious symptom detection using clinical narratives. Training (60) and testing (444) documents were randomly selected from VA emergency department, urgent care, and primary care records. Each document was processed with NLP and independently manually reviewed by two clinicians with adjudication by referee. Infectious symptom detection rules were developed in the training set using keywords and SNOMED-CT concepts, and subsequently evaluated using the testing set. RESULTS: Overall symptom detection performance was measured with a precision of 0.91, a recall of 0.84, and an F measure of 0.87. Overall symptom detection with assertion performance was measured with a precision of 0.67, a recall of 0.62, and an F measure of 0.64. Among those instances in which the automated system matched the reference set determination for symptom, the system correctly detected 84.7% of positive assertions, 75.1% of negative assertions, and 0.7% of uncertain assertions. CONCLUSION: This work demonstrates how processed text could enable detection of non-specific symptom clusters for use in automated surveillance activities.

Questions about the HSR website? Email the Web Team

Any health information on this website is strictly for informational purposes and is not intended as medical advice. It should not be used to diagnose or treat any condition.