Talk to the Veterans Crisis Line now
U.S. flag
An official website of the United States government

VA Health Systems Research

Go to the VA ORD website
Go to the QUERI website

HSR&D Citation Abstract

Search | Search by Center | Search by Source | Keywords in Title

Using ensemble models to classify the sentiment expressed in suicide notes.

McCart JA, Finch DK, Jarman J, Hickling E, Lind JD, Richardson MR, Berndt DJ, Luther SL. Using ensemble models to classify the sentiment expressed in suicide notes. Biomedical informatics insights. 2012 Jan 30; 5(Suppl. 1):77-85.

Dimensions for VA is a web-based tool available to VA staff that enables detailed searches of published research and research projects.

If you have VA-Intranet access, click here for more information

VA staff not currently on the VA network can access Dimensions by registering for an account using their VA email address.
   Search Dimensions for VA for this citation
* Don't have VA-internal network access or a VA email address? Try searching the free-to-the-public version of Dimensions


In 2007, suicide was the tenth leading cause of death in the U.S. Given the significance of this problem, suicide was the focus of the 2011 Informatics for Integrating Biology and the Bedside (i2b2) Natural Language Processing (NLP) shared task competition (track two). Specifically, the challenge concentrated on sentiment analysis, predicting the presence or absence of 15 emotions (labels) simultaneously in a collection of suicide notes spanning over 70 years. Our team explored multiple approaches combining regular expression-based rules, statistical text mining (STM), and an approach that applies weights to text while accounting for multiple labels. Our best submission used an ensemble of both rules and STM models to achieve a micro-averaged F(1) score of 0.5023, slightly above the mean from the 26 teams that competed (0.4875).

Questions about the HSR website? Email the Web Team

Any health information on this website is strictly for informational purposes and is not intended as medical advice. It should not be used to diagnose or treat any condition.