skip to page content
Talk to the Veterans Crisis Line now
U.S. flag
An official website of the United States government

Health Systems Research

Go to the VA ORD website
Go to the QUERI website

HSR&D Citation Abstract

Search | Search by Center | Search by Source | Keywords in Title

A semiparametric separation curve approach for comparing correlated ROC data from multiple markers.

Tang LL, Zhou XH. A semiparametric separation curve approach for comparing correlated ROC data from multiple markers. Journal of computational and graphical statistics : a joint publication of American Statistical Association, Institute of Mathematical Statistics, Interface Foundation of North America. 2012 Aug 16; 21(3):662-676.

Related HSR&D Project(s)

Dimensions for VA is a web-based tool available to VA staff that enables detailed searches of published research and research projects.

If you have VA-Intranet access, click here for more information

VA staff not currently on the VA network can access Dimensions by registering for an account using their VA email address.
   Search Dimensions for VA for this citation
* Don't have VA-internal network access or a VA email address? Try searching the free-to-the-public version of Dimensions


In this article we propose a separation curve method to identify the range of false positive rates for which two ROC curves differ or one ROC curve is superior to the other. Our method is based on a general multivariate ROC curve model, including interaction terms between discrete covariates and false positive rates. It is applicable with most existing ROC curve models. Furthermore, we introduce a semiparametric least squares ROC estimator and apply the estimator to the separation curve method. We derive a sandwich estimator for the covariance matrix of the semiparametric estimator. We illustrate the application of our separation curve method through two real life examples.

Questions about the HSR website? Email the Web Team

Any health information on this website is strictly for informational purposes and is not intended as medical advice. It should not be used to diagnose or treat any condition.