Talk to the Veterans Crisis Line now
U.S. flag
An official website of the United States government

Health Services Research & Development

Go to the ORD website
Go to the QUERI website

HSR&D Citation Abstract

Search | Search by Center | Search by Source | Keywords in Title

Development of a composite pain measure for persons with advanced dementia: exploratory analyses in self-reporting nursing home residents.

Ersek M, Polissar N, Neradilek MB. Development of a composite pain measure for persons with advanced dementia: exploratory analyses in self-reporting nursing home residents. Journal of pain and symptom management. 2011 Mar 1; 41(3):566-79.

Dimensions for VA is a web-based tool available to VA staff that enables detailed searches of published research and research projects.

If you have VA-Intranet access, click here for more information

VA staff not currently on the VA network can access Dimensions by registering for an account using their VA email address.
   Search Dimensions for VA for this citation
* Don't have VA-internal network access or a VA email address? Try searching the free-to-the-public version of Dimensions


CONTEXT: Experts agree that pain assessment in noncommunicative persons requires data from sources that do not rely on self-report, including proxy reports, health history, and observation of pain behaviors. However, there is little empirical evidence to guide clinicians in weighting or combining these sources to best approximate the person's experience. OBJECTIVES: The aim of this exploratory study was to identify a combination of observer-dependent pain indicators that would be significantly more predictive of self-reported pain intensity than any single indicator. Because self-reported pain is usually viewed as the criterion measure for pain, self-reported usual and worst pains were the dependent variables. METHODS: The sample consisted of 326 residents (mean age: 83.2 years; 69% female) living in one of 24 nursing homes. Independent variables did not rely on self-report: surrogate reports from certified nursing assistants (CNAs) using the Iowa Pain Thermometer (IPT), Checklist of Nonverbal Pain Indicators (CNPI), Cornell Scale for Depression in Dementia (CSDD), Pittsburgh Agitation Scale (PAS), number of painful diagnoses, and Minimum Data Set (MDS) pain variables. RESULTS: In univariate analyses, the CNA IPT scores were correlated most highly with self-reported pain. The final multivariate model for self-reported usual pain included CNA IPT, CSDD, PAS, and education; this model accounted for only 14% of the variance. The more extensive of the two final models for worst pain included MDS pain frequency, CSDD, CNA IPT, CNPI, and age (R(2) = 0.14). CONCLUSION: Additional research is needed to develop a predictive pain model for nonverbal persons.

Questions about the HSR&D website? Email the Web Team.

Any health information on this website is strictly for informational purposes and is not intended as medical advice. It should not be used to diagnose or treat any condition.