Talk to the Veterans Crisis Line now
U.S. flag
An official website of the United States government

Health Services Research & Development

Go to the ORD website
Go to the QUERI website

HSR&D Citation Abstract

Search | Search by Center | Search by Source | Keywords in Title

Finding falls in ambulatory care clinical documents using statistical text mining.

McCart JA, Berndt DJ, Jarman J, Finch DK, Luther SL. Finding falls in ambulatory care clinical documents using statistical text mining. Journal of the American Medical Informatics Association : JAMIA. 2013 Sep 1; 20(5):906-14.

Dimensions for VA is a web-based tool available to VA staff that enables detailed searches of published research and research projects.

If you have VA-Intranet access, click here for more information vaww.hsrd.research.va.gov/dimensions/

VA staff not currently on the VA network can access Dimensions by registering for an account using their VA email address.
   Search Dimensions for VA for this citation
* Don't have VA-internal network access or a VA email address? Try searching the free-to-the-public version of Dimensions



Abstract:

OBJECTIVE: To determine how well statistical text mining (STM) models can identify falls within clinical text associated with an ambulatory encounter. MATERIALS AND METHODS: 2241 patients were selected with a fall-related ICD-9-CM E-code or matched injury diagnosis code while being treated as an outpatient at one of four sites within the Veterans Health Administration. All clinical documents within a 48-h window of the recorded E-code or injury diagnosis code for each patient were obtained (n = 26 010; 611 distinct document titles) and annotated for falls. Logistic regression, support vector machine, and cost-sensitive support vector machine (SVM-cost) models were trained on a stratified sample of 70% of documents from one location (dataset Atrain) and then applied to the remaining unseen documents (datasets Atest-D). RESULTS: All three STM models obtained area under the receiver operating characteristic curve (AUC) scores above 0.950 on the four test datasets (Atest-D). The SVM-cost model obtained the highest AUC scores, ranging from 0.953 to 0.978. The SVM-cost model also achieved F-measure values ranging from 0.745 to 0.853, sensitivity from 0.890 to 0.931, and specificity from 0.877 to 0.944. DISCUSSION: The STM models performed well across a large heterogeneous collection of document titles. In addition, the models also generalized across other sites, including a traditionally bilingual site that had distinctly different grammatical patterns. CONCLUSIONS: The results of this study suggest STM-based models have the potential to improve surveillance of falls. Furthermore, the encouraging evidence shown here that STM is a robust technique for mining clinical documents bodes well for other surveillance-related topics.





Questions about the HSR&D website? Email the Web Team.

Any health information on this website is strictly for informational purposes and is not intended as medical advice. It should not be used to diagnose or treat any condition.