Talk to the Veterans Crisis Line now
U.S. flag
An official website of the United States government

Health Services Research & Development

Go to the ORD website
Go to the QUERI website

HSR&D Citation Abstract

Search | Search by Center | Search by Source | Keywords in Title

Who said it? Establishing professional attribution among authors of Veterans' Electronic Health Records.

Reeves RM, FitzHenry F, Brown SH, Kotter K, Gobbel GT, Montella D, Murff HJ, Speroff T, Matheny ME. Who said it? Establishing professional attribution among authors of Veterans' Electronic Health Records. AMIA ... Annual Symposium proceedings / AMIA Symposium. AMIA Symposium. 2013 Jul 30; 2012:753-62.

Dimensions for VA is a web-based tool available to VA staff that enables detailed searches of published research and research projects.

If you have VA-Intranet access, click here for more information vaww.hsrd.research.va.gov/dimensions/

VA staff not currently on the VA network can access Dimensions by registering for an account using their VA email address.
   Search Dimensions for VA for this citation
* Don't have VA-internal network access or a VA email address? Try searching the free-to-the-public version of Dimensions



Abstract:

BACKGROUND: A practical data point for assessing information quality and value in the Electronic Health Record (EHR) is the professional category of the EHR author. We evaluated and compared free form electronic signatures against LOINC note titles in categorizing the profession of EHR authors. METHODS: A random 1000 clinical document sample was selected and divided into 500 document sets for training and testing. The gold standard for provider classification was generated by dual clinician manual review, disagreements resolved by a third reviewer. Text matching algorithms composed of document titles and author electronic signatures for provider classification were developed on the training set. RESULTS: Overall, detection of professional classification by note titles alone resulted in 76.1% sensitivity and 69.4% specificity. The aggregate of note titles with electronic signatures resulted in 95.7% sensitivity and 98.5% specificity. CONCLUSIONS: Note titles alone provided fair professional classification. Inclusion of author electronic signatures significantly boosted classification performance.





Questions about the HSR&D website? Email the Web Team.

Any health information on this website is strictly for informational purposes and is not intended as medical advice. It should not be used to diagnose or treat any condition.