Talk to the Veterans Crisis Line now
U.S. flag
An official website of the United States government

Health Services Research & Development

Go to the ORD website
Go to the QUERI website

HSR&D Citation Abstract

Search | Search by Center | Search by Source | Keywords in Title

Comparative analysis of pharmacovigilance methods in the detection of adverse drug reactions using electronic medical records.

Liu M, McPeek Hinz ER, Matheny ME, Denny JC, Schildcrout JS, Miller RA, Xu H. Comparative analysis of pharmacovigilance methods in the detection of adverse drug reactions using electronic medical records. Journal of the American Medical Informatics Association : JAMIA. 2013 May 1; 20(3):420-6.

Dimensions for VA is a web-based tool available to VA staff that enables detailed searches of published research and research projects.

If you have VA-Intranet access, click here for more information vaww.hsrd.research.va.gov/dimensions/

VA staff not currently on the VA network can access Dimensions by registering for an account using their VA email address.
   Search Dimensions for VA for this citation
* Don't have VA-internal network access or a VA email address? Try searching the free-to-the-public version of Dimensions



Abstract:

OBJECTIVE: Medication safety requires that each drug be monitored throughout its market life as early detection of adverse drug reactions (ADRs) can lead to alerts that prevent patient harm. Recently, electronic medical records (EMRs) have emerged as a valuable resource for pharmacovigilance. This study examines the use of retrospective medication orders and inpatient laboratory results documented in the EMR to identify ADRs. METHODS: Using 12 years of EMR data from Vanderbilt University Medical Center (VUMC), we designed a study to correlate abnormal laboratory results with specific drug administrations by comparing the outcomes of a drug-exposed group and a matched unexposed group. We assessed the relative merits of six pharmacovigilance measures used in spontaneous reporting systems (SRSs): proportional reporting ratio (PRR), reporting OR (ROR), Yule's Q (YULE), the (2) test (CHI), Bayesian confidence propagation neural networks (BCPNN), and a gamma Poisson shrinker (GPS). RESULTS: We systematically evaluated the methods on two independently constructed reference standard datasets of drug-event pairs. The dataset of Yoon et al contained 470 drug-event pairs (10 drugs and 47 laboratory abnormalities). Using VUMC's EMR, we created another dataset of 378 drug-event pairs (nine drugs and 42 laboratory abnormalities). Evaluation on our reference standard showed that CHI, ROR, PRR, and YULE all had the same F score (62%). When the reference standard of Yoon et al was used, ROR had the best F score of 68%, with 77% precision and 61% recall. CONCLUSIONS: Results suggest that EMR-derived laboratory measurements and medication orders can help to validate previously reported ADRs, and detect new ADRs.





Questions about the HSR&D website? Email the Web Team.

Any health information on this website is strictly for informational purposes and is not intended as medical advice. It should not be used to diagnose or treat any condition.