Talk to the Veterans Crisis Line now
U.S. flag
An official website of the United States government

Health Services Research & Development

Go to the ORD website
Go to the QUERI website

HSR&D Citation Abstract

Search | Search by Center | Search by Source | Keywords in Title

Analysis of False Positive Errors of an Acute Respiratory Infection Text Classifier due to Contextual Features.

South BR, Shen S, Chapman WW, Delisle S, Samore MH, Gundlapalli AV. Analysis of False Positive Errors of an Acute Respiratory Infection Text Classifier due to Contextual Features. AMIA Summits on Translational Science proceedings. 2010 Mar 1; 2010:56-60.

Related HSR&D Project(s)

Dimensions for VA is a web-based tool available to VA staff that enables detailed searches of published research and research projects.

If you have VA-Intranet access, click here for more information

VA staff not currently on the VA network can access Dimensions by registering for an account using their VA email address.
   Search Dimensions for VA for this citation
* Don't have VA-internal network access or a VA email address? Try searching the free-to-the-public version of Dimensions


Text classifiers have been used for biosurveillance tasks to identify patients with diseases or conditions of interest. When compared to a clinical reference standard of 280 cases of Acute Respiratory Infection (ARI), a text classifier consisting of simple rules and NegEx plus string matching for specific concepts of interest produced 569 (4%) false positive (FP) cases. Using instance level manual annotation we estimate the prevalence of contextual attributes and error types leading to FP cases. Errors were due to (1) Deletion errors from abbreviations, spelling mistakes and missing synonyms (57%); (2) Insertion errors from templated document structures such as check boxes, and lists of signs and symptoms (36%) and; (3) Substitution errors from irrelevant concepts and alternate meanings for the same word (6%). We demonstrate that specific concept attributes contribute to false positive cases. These results will inform modifications and adaptations to improve text classifier performance.

Questions about the HSR&D website? Email the Web Team.

Any health information on this website is strictly for informational purposes and is not intended as medical advice. It should not be used to diagnose or treat any condition.