Talk to the Veterans Crisis Line now
U.S. flag
An official website of the United States government

VA Health Systems Research

Go to the VA ORD website
Go to the QUERI website

HSR&D Citation Abstract

Search | Search by Center | Search by Source | Keywords in Title

Development and validation of a predictive model of acute glucose response to exercise in individuals with type 2 diabetes.

Gibson BS, Colberg SR, Poirier P, Vancea DM, Jones J, Marcus R. Development and validation of a predictive model of acute glucose response to exercise in individuals with type 2 diabetes. Diabetology & metabolic syndrome. 2013 Jul 1; 5(1):33.

Dimensions for VA is a web-based tool available to VA staff that enables detailed searches of published research and research projects.

If you have VA-Intranet access, click here for more information vaww.hsrd.research.va.gov/dimensions/

VA staff not currently on the VA network can access Dimensions by registering for an account using their VA email address.
   Search Dimensions for VA for this citation
* Don't have VA-internal network access or a VA email address? Try searching the free-to-the-public version of Dimensions



Abstract:

BACKGROUND: Our purpose was to develop and test a predictive model of the acute glucose response to exercise in individuals with type 2 diabetes. DESIGN AND METHODS: Data from three previous exercise studies (56 subjects, 488 exercise sessions) were combined and used as a development dataset. A mixed-effects Least Absolute Shrinkage Selection Operator (LASSO) was used to select predictors among 12 potential predictors. Tests of the relative importance of each predictor were conducted using the Lindemann Merenda and Gold (LMG) algorithm. Model structure was tested using likelihood ratio tests. Model accuracy in the development dataset was assessed by leave-one-out cross-validation.Prospectively captured data (47 individuals, 436 sessions) was used as a test dataset. Model accuracy was calculated as the percentage of predictions within measurement error. Overall model utility was assessed as the number of subjects with = 1 model error after the third exercise session. Model accuracy across individuals was assessed graphically. In a post-hoc analysis, a mixed-effects logistic regression tested the association of individuals' attributes with model error. RESULTS: Minutes since eating, a non-linear transformation of minutes since eating, post-prandial state, hemoglobin A1c, sulfonylurea status, age, and exercise session number were identified as novel predictors. Minutes since eating, its transformations, and hemoglobin A1c combined to account for 19.6% of the variance in glucose response. Sulfonylurea status, age, and exercise session each accounted for < 1.0% of the variance. In the development dataset, a model with random slopes for pre-exercise glucose improved fit over a model with random intercepts only (likelihood ratio 34.5, p? < 0.001). Cross-validated model accuracy was 83.3%.In the test dataset, overall accuracy was 80.2%. The model was more accurate in pre-prandial than postprandial exercise (83.6% vs. 74.5% accuracy respectively). 31/47 subjects had = 1 model error after the third exercise session. Model error varied across individuals and was weakly associated with within-subject variability in pre-exercise glucose (Odds ratio 1.49, 95% Confidence interval 1.23-1.75). CONCLUSIONS: The preliminary development and test of a predictive model of acute glucose response to exercise is presented. Further work to improve this model is discussed.





Questions about the HSR website? Email the Web Team

Any health information on this website is strictly for informational purposes and is not intended as medical advice. It should not be used to diagnose or treat any condition.