Talk to the Veterans Crisis Line now
U.S. flag
An official website of the United States government

Health Services Research & Development

Go to the ORD website
Go to the QUERI website

HSR&D Citation Abstract

Search | Search by Center | Search by Source | Keywords in Title

Joint modeling of transitional patterns of Alzheimer's disease.

Liu W, Zhang B, Zhang Z, Zhou XH. Joint modeling of transitional patterns of Alzheimer's disease. PLoS ONE. 2013 Sep 20; 8(9):e75487.

Related HSR&D Project(s)

Dimensions for VA is a web-based tool available to VA staff that enables detailed searches of published research and research projects.

If you have VA-Intranet access, click here for more information vaww.hsrd.research.va.gov/dimensions/

VA staff not currently on the VA network can access Dimensions by registering for an account using their VA email address.
   Search Dimensions for VA for this citation
* Don't have VA-internal network access or a VA email address? Try searching the free-to-the-public version of Dimensions



Abstract:

While the experimental Alzheimer's drugs recently developed by pharmaceutical companies failed to stop the progression of Alzheimer's disease, clinicians strive to seek clues on how the patients would be when they visit back next year, based upon the patients' current clinical and neuropathologic diagnosis results. This is related to how to precisely identify the transitional patterns of Alzheimer's disease. Due to the complexities of the diagnosis of Alzheimer's disease, the condition of the disease is usually characterized by multiple clinical and neuropathologic measurements, including Clinical Dementia Rating (CDRGLOB), Mini-Mental State Examination (MMSE), a score derived from the clinician judgement on neuropsychological tests (COGSTAT), and Functional Activities Questionnaire (FAQ). In this research article, we investigate a class of novel joint random-effects transition models that are used to simultaneously analyze the transitional patterns of multiple primary measurements of Alzheimer's disease and, at the same time, account for the association between the measurements. The proposed methodology can avoid the bias introduced by ignoring the correlation between primary measurements and can predict subject-specific transitional patterns.





Questions about the HSR&D website? Email the Web Team.

Any health information on this website is strictly for informational purposes and is not intended as medical advice. It should not be used to diagnose or treat any condition.