Talk to the Veterans Crisis Line now
U.S. flag
An official website of the United States government

Health Services Research & Development

Go to the ORD website
Go to the QUERI website

HSR&D Citation Abstract

Search | Search by Center | Search by Source | Keywords in Title

The potential impact of intelligent systems for mobile health self-management support: Monte Carlo simulations of text message support for medication adherence.

Piette JD, Farris KB, Newman S, An L, Sussman J, Singh S. The potential impact of intelligent systems for mobile health self-management support: Monte Carlo simulations of text message support for medication adherence. Annals of behavioral medicine : a publication of the Society of Behavioral Medicine. 2015 Feb 1; 49(1):84-94.

Related HSR&D Project(s)

Dimensions for VA is a web-based tool available to VA staff that enables detailed searches of published research and research projects.

If you have VA-Intranet access, click here for more information vaww.hsrd.research.va.gov/dimensions/

VA staff not currently on the VA network can access Dimensions by registering for an account using their VA email address.
   Search Dimensions for VA for this citation
* Don't have VA-internal network access or a VA email address? Try searching the free-to-the-public version of Dimensions



Abstract:

BACKGROUND: Mobile health (mHealth) services cannot easily adapt to users' unique needs. PURPOSE: We used simulations of text messaging (SMS) for improving medication adherence to demonstrate benefits of interventions using reinforcement learning (RL). METHODS: We used Monte Carlo simulations to estimate the relative impact of an intervention using RL to adapt SMS adherence support messages in order to more effectively address each non-adherent patient's adherence barriers, e.g., forgetfulness versus side effect concerns. SMS messages were assumed to improve adherence only when they matched the barriers for that patient. Baseline adherence and the impact of matching messages were estimated from literature review. RL-SMS was compared in common scenarios to simple reminders, random messages, and standard tailoring. RESULTS: RL could produce a 5-14% absolute improvement in adherence compared to current approaches. When adherence barriers are not accurately reported, RL can recognize which barriers are relevant for which patients. When barriers change, RL can adjust message targeting. RL can detect when messages are sent too frequently causing burnout. CONCLUSIONS: RL systems could make mHealth services more effective.





Questions about the HSR&D website? Email the Web Team.

Any health information on this website is strictly for informational purposes and is not intended as medical advice. It should not be used to diagnose or treat any condition.