Talk to the Veterans Crisis Line now
U.S. flag
An official website of the United States government

VA Health Systems Research

Go to the VA ORD website
Go to the QUERI website

HSR Citation Abstract

Search | Search by Center | Search by Source | Keywords in Title

A marginalized two-part model for semicontinuous data.

Smith VA, Preisser JS, Neelon B, Maciejewski ML. A marginalized two-part model for semicontinuous data. Statistics in medicine. 2014 Dec 10; 33(28):4891-903.

Related HSR&D Project(s)

Dimensions for VA is a web-based tool available to VA staff that enables detailed searches of published research and research projects.

If you have VA-Intranet access, click here for more information vaww.hsrd.research.va.gov/dimensions/

VA staff not currently on the VA network can access Dimensions by registering for an account using their VA email address.
   Search Dimensions for VA for this citation
* Don't have VA-internal network access or a VA email address? Try searching the free-to-the-public version of Dimensions



Abstract:

In health services research, it is common to encounter semicontinuous data characterized by a point mass at zero followed by a right-skewed continuous distribution with positive support. Examples include health expenditures, in which the zeros represent a subpopulation of patients who do not use health services, while the continuous distribution describes the level of expenditures among health services users. Semicontinuous data are typically analyzed using two-part mixture models that separately model the probability of health services use and the distribution of positive expenditures among users. However, because the second part conditions on a non-zero response, conventional two-part models do not provide a marginal interpretation of covariate effects on the overall population of health service users and non-users, even though this is often of greatest interest to investigators. Here, we propose a marginalized two-part model that yields more interpretable effect estimates in two-part models by parameterizing the model in terms of the marginal mean. This model maintains many of the important features of conventional two-part models, such as capturing zero-inflation and skewness, but allows investigators to examine covariate effects on the overall marginal mean, a target of primary interest in many applications. Using a simulation study, we examine properties of the maximum likelihood estimates from this model. We illustrate the approach by evaluating the effect of a behavioral weight loss intervention on health-care expenditures in the Veterans Affairs health-care system.





Questions about the HSR website? Email the Web Team

Any health information on this website is strictly for informational purposes and is not intended as medical advice. It should not be used to diagnose or treat any condition.