Talk to the Veterans Crisis Line now
U.S. flag
An official website of the United States government

VA Health Systems Research

Go to the VA ORD website
Go to the QUERI website

HSR&D Citation Abstract

Search | Search by Center | Search by Source | Keywords in Title

Clinical decision support with natural language processing facilitates determination of colonoscopy surveillance intervals.

Imler TD, Morea J, Imperiale TF. Clinical decision support with natural language processing facilitates determination of colonoscopy surveillance intervals. Clinical gastroenterology and hepatology : the official clinical practice journal of the American Gastroenterological Association. 2014 Jul 1; 12(7):1130-6.

Related HSR&D Project(s)

Dimensions for VA is a web-based tool available to VA staff that enables detailed searches of published research and research projects.

If you have VA-Intranet access, click here for more information

VA staff not currently on the VA network can access Dimensions by registering for an account using their VA email address.
   Search Dimensions for VA for this citation
* Don't have VA-internal network access or a VA email address? Try searching the free-to-the-public version of Dimensions


BACKGROUND and AIMS: With an increased emphasis on improving quality and decreasing costs, new tools are needed to improve adherence to evidence-based practices and guidelines in endoscopy. We investigated the ability of an automated system that uses natural language processing (NLP) and clinical decision support (CDS) to facilitate determination of colonoscopy surveillance intervals. METHODS: We performed a retrospective study at a single Veterans Administration medical center of patients age 40 years and older who had an index outpatient colonoscopy from 2002 through 2009 for any indication except surveillance of a previous colorectal neoplasia. We analyzed data from 10,798 reports, with 6379 linked to pathology results and 300 randomly selected reports. NLP-based CDS surveillance intervals were compared with those determined by paired, blinded, manual review. The primary outcome was adjusted agreement between manual review and the fully automated system. RESULTS: ? statistical analysis produced a value of 0.74 (P < .001) for agreement between the full text annotation and the NLP-based CDS system. Fifty-five reports (18.3%; 95% confidence interval, 14.1%-23.2%) differed between manual review and CDS recommendations. Of these, NLP error accounted for 30 (54.5%), incomplete resection of adenomatous tissue accounted for 14 (25.5%), and masses observed without biopsy findings of cancer accounted for 4 (7.2%). NLP-based CDS surveillance intervals had higher levels of agreement with the standard (81.7%) than the level agreement between experts (72% agreement between paired reviewers). CONCLUSIONS: A fully automated system that uses NLP and a guideline-based CSD system can accurately facilitate guideline-recommended adherence surveillance for colonoscopy.

Questions about the HSR website? Email the Web Team

Any health information on this website is strictly for informational purposes and is not intended as medical advice. It should not be used to diagnose or treat any condition.