Talk to the Veterans Crisis Line now
U.S. flag
An official website of the United States government

VA Health Systems Research

Go to the VA ORD website
Go to the QUERI website

HSR Citation Abstract

Search | Search by Center | Search by Source | Keywords in Title

Text summarization in the biomedical domain: a systematic review of recent research.

Mishra R, Bian J, Fiszman M, Weir CR, Jonnalagadda S, Mostafa J, Del Fiol G. Text summarization in the biomedical domain: a systematic review of recent research. Journal of Biomedical Informatics. 2014 Dec 1; 52:457-67.

Related HSR&D Project(s)

Dimensions for VA is a web-based tool available to VA staff that enables detailed searches of published research and research projects.

If you have VA-Intranet access, click here for more information

VA staff not currently on the VA network can access Dimensions by registering for an account using their VA email address.
   Search Dimensions for VA for this citation
* Don't have VA-internal network access or a VA email address? Try searching the free-to-the-public version of Dimensions


OBJECTIVE: The amount of information for clinicians and clinical researchers is growing exponentially. Text summarization reduces information as an attempt to enable users to find and understand relevant source texts more quickly and effortlessly. In recent years, substantial research has been conducted to develop and evaluate various summarization techniques in the biomedical domain. The goal of this study was to systematically review recent published research on summarization of textual documents in the biomedical domain. MATERIALS AND METHODS: MEDLINE (2000 to October 2013), IEEE Digital Library, and the ACM digital library were searched. Investigators independently screened and abstracted studies that examined text summarization techniques in the biomedical domain. Information is derived from selected articles on five dimensions: input, purpose, output, method and evaluation. RESULTS: Of 10,786 studies retrieved, 34 (0.3%) met the inclusion criteria. Natural language processing (17; 50%) and a hybrid technique comprising of statistical, Natural language processing and machine learning (15; 44%) were the most common summarization approaches. Most studies (28; 82%) conducted an intrinsic evaluation. DISCUSSION: This is the first systematic review of text summarization in the biomedical domain. The study identified research gaps and provides recommendations for guiding future research on biomedical text summarization. CONCLUSION: Recent research has focused on a hybrid technique comprising statistical, language processing and machine learning techniques. Further research is needed on the application and evaluation of text summarization in real research or patient care settings.

Questions about the HSR website? Email the Web Team

Any health information on this website is strictly for informational purposes and is not intended as medical advice. It should not be used to diagnose or treat any condition.