Talk to the Veterans Crisis Line now
U.S. flag
An official website of the United States government

Health Services Research & Development

Go to the ORD website
Go to the QUERI website

HSR&D Citation Abstract

Search | Search by Center | Search by Source | Keywords in Title

The Magnitude of Time-Dependent Bias in the Estimation of Excess Length of Stay Attributable to Healthcare-Associated Infections.

Nelson RE, Nelson SD, Khader K, Perencevich EL, Schweizer ML, Rubin MA, Graves N, Harbarth S, Stevens VW, Samore MH. The Magnitude of Time-Dependent Bias in the Estimation of Excess Length of Stay Attributable to Healthcare-Associated Infections. Infection control and hospital epidemiology. 2015 Sep 1; 36(9):1089-94.

Dimensions for VA is a web-based tool available to VA staff that enables detailed searches of published research and research projects.

If you have VA-Intranet access, click here for more information vaww.hsrd.research.va.gov/dimensions/

VA staff not currently on the VA network can access Dimensions by registering for an account using their VA email address.
   Search Dimensions for VA for this citation
* Don't have VA-internal network access or a VA email address? Try searching the free-to-the-public version of Dimensions



Abstract:

BACKGROUND Estimates of the excess length of stay (LOS) attributable to healthcare-associated infections (HAIs) in which total LOS of patients with and without HAIs are biased because of failure to account for the timing of infection. Alternate methods that appropriately treat HAI as a time-varying exposure are multistate models and cohort studies, which match regarding the time of infection. We examined the magnitude of this time-dependent bias in published studies that compared different methodological approaches. METHODS We conducted a systematic review of the published literature to identify studies that report attributable LOS estimates using both total LOS (time-fixed) methods and either multistate models or matching patients with and without HAIs using the timing of infection. RESULTS Of the 7 studies that compared time-fixed methods to multistate models, conventional methods resulted in estimates of the LOS to HAIs that were, on average, 9.4 days longer or 238% greater than those generated using multistate models. Of the 5 studies that compared time-fixed methods to matching on timing of infection, conventional methods resulted in estimates of the LOS to HAIs that were, on average, 12.6 days longer or 139% greater than those generated by matching on timing of infection. CONCLUSION Our results suggest that estimates of the attributable LOS due to HAIs depend heavily on the methods used to generate those estimates. Overestimation of this effect can lead to incorrect assumptions of the likely cost savings from HAI prevention measures.





Questions about the HSR&D website? Email the Web Team.

Any health information on this website is strictly for informational purposes and is not intended as medical advice. It should not be used to diagnose or treat any condition.