Talk to the Veterans Crisis Line now
U.S. flag
An official website of the United States government

VA Health Systems Research

Go to the VA ORD website
Go to the QUERI website

HSR&D Citation Abstract

Search | Search by Center | Search by Source | Keywords in Title

Variable activation of the DNA damage response pathways in patients undergoing single-photon emission computed tomography myocardial perfusion imaging.

Lee WH, Nguyen P, Hu S, Liang G, Ong SG, Han L, Sanchez-Freire V, Lee AS, Vasanawala M, Segall G, Wu JC. Variable activation of the DNA damage response pathways in patients undergoing single-photon emission computed tomography myocardial perfusion imaging. Circulation. Cardiovascular imaging. 2015 Feb 1; 8(2):e002851.

Dimensions for VA is a web-based tool available to VA staff that enables detailed searches of published research and research projects.

If you have VA-Intranet access, click here for more information vaww.hsrd.research.va.gov/dimensions/

VA staff not currently on the VA network can access Dimensions by registering for an account using their VA email address.
   Search Dimensions for VA for this citation
* Don't have VA-internal network access or a VA email address? Try searching the free-to-the-public version of Dimensions



Abstract:

BACKGROUND: Although single-photon emission computed tomography myocardial perfusion imaging (SPECT MPI) has improved the diagnosis and risk stratification of patients with suspected coronary artery disease, it remains a primary source of low-dose radiation exposure for cardiac patients. To determine the biological effects of low-dose radiation from SPECT MPI, we measured the activation of the DNA damage response pathways using quantitative flow cytometry and single-cell gene expression profiling. METHODS AND RESULTS: Blood samples were collected from patients before and after SPECT MPI (n = 63). Overall, analysis of all recruited patients showed no marked differences in the phosphorylation of proteins (H2AX, protein 53, and ataxia telangiectasia mutated) after SPECT. The majority of patients also had either downregulated or unchanged expression in DNA damage response genes at both 24 and 48 hours post-SPECT. Interestingly, a small subset of patients with increased phosphorylation had significant upregulation of genes associated with DNA damage, whereas those with no changes in phosphorylation had significant downregulation or no difference, suggesting that some patients may potentially be more sensitive to low-dose radiation exposure. CONCLUSIONS: Our findings showed that SPECT MPI resulted in a variable activation of the DNA damage response pathways. Although only a small subset of patients had increased protein phosphorylation and elevated gene expression postimaging, continued care should be taken to reduce radiation exposure to both the patients and operators.





Questions about the HSR website? Email the Web Team

Any health information on this website is strictly for informational purposes and is not intended as medical advice. It should not be used to diagnose or treat any condition.