Talk to the Veterans Crisis Line now
U.S. flag
An official website of the United States government

VA Health Systems Research

Go to the VA ORD website
Go to the QUERI website

HSR&D Citation Abstract

Search | Search by Center | Search by Source | Keywords in Title

Active and passive smoking in relation to lung cancer incidence in the Women's Health Initiative Observational Study prospective cohort.

Wang A, Kubo J, Luo J, Desai M, Hedlin H, Henderson M, Chlebowski R, Tindle H, Chen C, Gomez S, Manson JE, Schwartz AG, Wactawski-Wende J, Cote M, Patel MI, Stefanick ML, Wakelee HA. Active and passive smoking in relation to lung cancer incidence in the Women's Health Initiative Observational Study prospective cohort. Annals of oncology : official journal of the European Society for Medical Oncology / ESMO. 2015 Jan 1; 26(1):221-30.

Dimensions for VA is a web-based tool available to VA staff that enables detailed searches of published research and research projects.

If you have VA-Intranet access, click here for more information vaww.hsrd.research.va.gov/dimensions/

VA staff not currently on the VA network can access Dimensions by registering for an account using their VA email address.
   Search Dimensions for VA for this citation
* Don't have VA-internal network access or a VA email address? Try searching the free-to-the-public version of Dimensions



Abstract:

BACKGROUND: Lung cancer is the leading cause of worldwide cancer deaths. While smoking is its leading risk factor, few prospective cohort studies have reported on the association of lung cancer with both active and passive smoking. This study aimed to determine the relationship between lung cancer incidence with both active and passive smoking (childhood, adult at home, and at work). PATIENTS AND METHODS: The Women's Health Initiative Observational Study (WHI-OS) was a prospective cohort study conducted at 40 US centers that enrolled postmenopausal women from 1993 to 1999. Among 93 676 multiethnic participants aged 50-79, 76 304 women with complete smoking and covariate data comprised the analytic cohort. Lung cancer incidence was calculated by Cox proportional hazards models, stratified by smoking status. RESULTS: Over 10.5 mean follow-up years, 901 lung cancer cases were identified. Compared with never smokers (NS), lung cancer incidence was much higher in current [hazard ratio (HR) 13.44, 95% confidence interval (CI) 10.80-16.75] and former smokers (FS; HR 4.20, 95% CI 3.48-5.08) in a dose-dependent manner. Current and FS had significantly increased risk for all lung cancer subtypes, particularly small-cell and squamous cell carcinoma. Among NS, any passive smoking exposure did not significantly increase lung cancer risk (HR 0.88, 95% CI 0.52-1.49). However, risk tended to be increased in NS with adult home passive smoking exposure 30 years, compared with NS with no adult home exposure (HR 1.61, 95% CI 1.00-2.58). CONCLUSIONS: In this prospective cohort of postmenopausal women, active smoking significantly increased risk of all lung cancer subtypes; current smokers had significantly increased risk compared with FS. Among NS, prolonged passive adult home exposure tended to increase lung cancer risk. These data support continued need for smoking prevention and cessation interventions, passive smoking research, and further study of lung cancer risk factors in addition to smoking. CLINICALTRIALS.GOV: NCT00000611.





Questions about the HSR website? Email the Web Team

Any health information on this website is strictly for informational purposes and is not intended as medical advice. It should not be used to diagnose or treat any condition.