Talk to the Veterans Crisis Line now
U.S. flag
An official website of the United States government

Health Services Research & Development

Go to the ORD website
Go to the QUERI website

HSR&D Citation Abstract

Search | Search by Center | Search by Source | Keywords in Title

Urinary Squamous Epithelial Cells Do Not Accurately Predict Urine Culture Contamination, but May Predict Urinalysis Performance in Predicting Bacteriuria.

Mohr NM, Harland KK, Crabb V, Mutnick R, Baumgartner D, Spinosi S, Haarstad M, Ahmed A, Schweizer M, Faine B. Urinary Squamous Epithelial Cells Do Not Accurately Predict Urine Culture Contamination, but May Predict Urinalysis Performance in Predicting Bacteriuria. Academic emergency medicine : official journal of the Society for Academic Emergency Medicine. 2016 Mar 1; 23(3):323-30.

Dimensions for VA is a web-based tool available to VA staff that enables detailed searches of published research and research projects.

If you have VA-Intranet access, click here for more information vaww.hsrd.research.va.gov/dimensions/

VA staff not currently on the VA network can access Dimensions by registering for an account using their VA email address.
   Search Dimensions for VA for this citation
* Don't have VA-internal network access or a VA email address? Try searching the free-to-the-public version of Dimensions



Abstract:

OBJECTIVES: The presence of squamous epithelial cells (SECs) has been advocated to identify urinary contamination despite a paucity of evidence supporting this practice. We sought to determine the value of using quantitative SECs as a predictor of urinalysis contamination. METHODS: Retrospective cross-sectional study of adults ( = 18 years old) presenting to a tertiary academic medical center who had urinalysis with microscopy and urine culture performed. Patients with missing or implausible demographic data were excluded (2.5% of total sample). The primary analysis aimed to determine an SEC threshold that predicted urine culture contamination using receiver operating characteristics (ROC) curve analysis. The a priori secondary analysis explored how demographic variables (age, sex, body mass index) may modify the SEC test performance and whether SECs impacted traditional urinalysis indicators of bacteriuria. RESULTS: A total of 19,328 records were included. ROC curve analysis demonstrated that SEC count was a poor predictor of urine culture contamination (area under the ROC curve = 0.680, 95% confidence interval [CI] = 0.671 to 0.689). In secondary analysis, the positive likelihood ratio (LR+) of predicting bacteriuria via urinalysis among noncontaminated specimens was 4.98 (95% CI = 4.59 to 5.40) in the absence of SECs, but the LR+ fell to 2.35 (95% CI = 2.17 to 2.54) for samples with more than 8 SECs/low-powered field (lpf). In an independent validation cohort, urinalysis samples with fewer than 8 SECs/lpf predicted bacteriuria better (sensitivity = 75%, specificity = 84%) than samples with more than 8 SECs/lpf (sensitivity = 86%, specificity = 70%; diagnostic odds ratio = 17.5 [14.9 to 20.7] vs. 8.7 [7.3 to 10.5]). CONCLUSIONS: Squamous epithelial cells are a poor predictor of urine culture contamination, but may predict poor predictive performance of traditional urinalysis measures.





Questions about the HSR&D website? Email the Web Team.

Any health information on this website is strictly for informational purposes and is not intended as medical advice. It should not be used to diagnose or treat any condition.