Talk to the Veterans Crisis Line now
U.S. flag
An official website of the United States government

VA Health Systems Research

Go to the VA ORD website
Go to the QUERI website

HSR Citation Abstract

Search | Search by Center | Search by Source | Keywords in Title

Racial Differences in the Performance of Existing Risk Prediction Models for Incident Type 2 Diabetes: The CARDIA Study.

Lacy ME, Wellenius GA, Carnethon MR, Loucks EB, Carson AP, Luo X, Kiefe CI, Gjelsvik A, Gunderson EP, Eaton CB, Wu WC. Racial Differences in the Performance of Existing Risk Prediction Models for Incident Type 2 Diabetes: The CARDIA Study. Diabetes Care. 2016 Feb 1; 39(2):285-91.

Dimensions for VA is a web-based tool available to VA staff that enables detailed searches of published research and research projects.

If you have VA-Intranet access, click here for more information vaww.hsrd.research.va.gov/dimensions/

VA staff not currently on the VA network can access Dimensions by registering for an account using their VA email address.
   Search Dimensions for VA for this citation
* Don't have VA-internal network access or a VA email address? Try searching the free-to-the-public version of Dimensions



Abstract:

OBJECTIVE: In 2010, the American Diabetes Association (ADA) added hemoglobin A1c (A1C) to the guidelines for diagnosing type 2 diabetes. However, existing models for predicting diabetes risk were developed prior to the widespread adoption of A1C. Thus, it remains unknown how well existing diabetes risk prediction models predict incident diabetes defined according to the ADA 2010 guidelines. Accordingly, we examined the performance of an existing diabetes prediction model applied to a cohort of African American (AA) and white adults from the Coronary Artery Risk Development Study in Young Adults (CARDIA). RESEARCH DESIGN AND METHODS: We evaluated the performance of the Atherosclerosis Risk in Communities (ARIC) diabetes risk prediction model among 2,456 participants in CARDIA free of diabetes at the 2005-2006 exam and followed for 5 years. We evaluated model discrimination, calibration, and integrated discrimination improvement with incident diabetes defined by ADA 2010 guidelines before and after adding baseline A1C to the prediction model. RESULTS: In the overall cohort, re-estimating the ARIC model in the CARDIA cohort resulted in good discrimination for the prediction of 5-year diabetes risk (area under the curve [AUC] 0.841). Adding baseline A1C as a predictor improved discrimination (AUC 0.841 vs. 0.863, P = 0.03). In race-stratified analyses, model discrimination was significantly higher in whites than AA (AUC AA 0.816 vs. whites 0.902; P = 0.008). CONCLUSIONS: Addition of A1C to the ARIC diabetes risk prediction model improved performance overall and in racial subgroups. However, for all models examined, discrimination was better in whites than AA. Additional studies are needed to further improve diabetes risk prediction among AA.





Questions about the HSR website? Email the Web Team

Any health information on this website is strictly for informational purposes and is not intended as medical advice. It should not be used to diagnose or treat any condition.