Talk to the Veterans Crisis Line now
U.S. flag
An official website of the United States government

VA Health Systems Research

Go to the VA ORD website
Go to the QUERI website

HSR&D Citation Abstract

Search | Search by Center | Search by Source | Keywords in Title

Bayesian negative binomial regression with spatially varying dispersion: Modeling COVID-19 incidence in Georgia.

Mutiso F, Pearce JL, Benjamin-Neelon SE, Mueller NT, Li H, Neelon B. Bayesian negative binomial regression with spatially varying dispersion: Modeling COVID-19 incidence in Georgia. Spatial statistics. 2022 Dec 1; 52:100703.

Dimensions for VA is a web-based tool available to VA staff that enables detailed searches of published research and research projects.

If you have VA-Intranet access, click here for more information

VA staff not currently on the VA network can access Dimensions by registering for an account using their VA email address.
   Search Dimensions for VA for this citation
* Don't have VA-internal network access or a VA email address? Try searching the free-to-the-public version of Dimensions


Overdispersed count data arise commonly in disease mapping and infectious disease studies. Typically, the level of overdispersion is assumed to be constant over time and space. In some applications, however, this assumption is violated, and in such cases, it is necessary to model the dispersion as a function of time and space in order to obtain valid inferences. Motivated by a study examining spatiotemporal patterns in COVID-19 incidence, we develop a Bayesian negative binomial model that accounts for heterogeneity in both the incidence rate and degree of overdispersion. To fully capture the heterogeneity in the data, we introduce region-level covariates, smooth temporal effects, and spatially correlated random effects in both the mean and dispersion components of the model. The random effects are assigned bivariate intrinsic conditionally autoregressive priors that promote spatial smoothing and permit the model components to borrow information, which is appealing when the mean and dispersion are spatially correlated. Through simulation studies, we show that ignoring heterogeneity in the dispersion can lead to biased and imprecise estimates. For estimation, we adopt a Bayesian approach that combines full-conditional Gibbs sampling and Metropolis-Hastings steps. We apply the model to a study of COVID-19 incidence in the state of Georgia, USA from March 15 to December 31, 2020.

Questions about the HSR website? Email the Web Team

Any health information on this website is strictly for informational purposes and is not intended as medical advice. It should not be used to diagnose or treat any condition.