Talk to the Veterans Crisis Line now
U.S. flag
An official website of the United States government

VA Health Systems Research

Go to the VA ORD website
Go to the QUERI website

IIR 16-274 – HSR Study

IIR 16-274
Impact of neighborhood and workforce deprivation on diabetes outcomes in Veterans: a spatio-temporal analysis
Brian H. Neelon, PhD MS BA
Ralph H. Johnson VA Medical Center, Charleston, SC
Charleston, SC
Kelly Hunt PhD MSPH
Ralph H. Johnson VA Medical Center, Charleston, SC
Charleston, SC
Funding Period: May 2018 - October 2021
Diabetes is the seventh leading cause of death in the United States, can lead to serious complications, and is associated with increased healthcare costs. Prevalence estimates for Veterans show a disproportionate burden of disease, with estimates close to 25%, as compared to 8% of the general US population. Evidence consistently shows racial minorities have a higher prevalence of diabetes, worse outcomes, higher risk of complications, and higher mortality rate compared to non-Hispanic whites. This disparity persists after controlling for patient-level factors such as education, income, knowledge, health literacy, and self-efficacy; provider-level factors, such as bias, communication, and trust; and system-level factors, such as access to care. Little attention has been given to differences that may be explained by regional variation in patient-level resources, community-level resources, and health workforce resources.

This study seeks to identify and explain spatial and temporal variation in health outcomes, community resources, VA workforce capacity, and health disparities among patients with type 2 diabetes. Aim 1 will examine spatiotemporal trends in diabetes outcomes, including metabolic control, cost, and mortality. Aim 2 will develop a new spatiotemporal neighborhood deprivation index and examine its association with diabetes outcomes and racial disparities. Aim 3 will develop and validate a novel geographic workforce deprivation index to examine its association with diabetes outcomes and racial disparities.

We will construct a cohort of veterans with type 2 diabetes receiving either inpatient or outpatient care at the VA during the years 2000 through 2015 by linking multiple patient and administrative files from the VHA National Patient Care and Pharmacy Benefits Management databases, using a previously validated VA algorithm. Using advanced GIS and spatial statistical methods, we will examine spatiotemporal trends in diabetes outcomes among Veterans with type 2 diabetes. In Aim 1, we will develop a flexible Bayesian spatiotemporal model to identify hotspots of high prevalence of diabetes-related outcomes. In Aims 2 and 3, we will use spatiotemporal latent factor models to develop novel neighborhood and workforce deprivation indices, allowing us to investigate evolving patterns in community resource availability and VA workforce capacity. Completion of these aims will enable the VA to identify individual, community, and institutional factors associated with poor diabetes outcomes and to target community and system-level efforts to improve health in low-resource areas.

No findings to date, project was just awarded May 1st 2018.

This project will put forth a comprehensive geospatial framework to address the VA Blueprint for Excellence Strategy 3: Leverage information technologies, analytics, and models of healthcare to optimize individual well-being and population health outcomes. By creating a spatially referenced dataset incorporating health information, workforce productivity, neighborhood deprivation, we will develop a comprehensive database to examine multiple dimensions of diabetes care. Through the use of advanced GIS and spatiotemporal statistics, we will identify hotspots of high disease risk, poor neighborhood resources, and low VA workforce capacity. This information will improve access to care by helping VA policy makers better match resources to areas with poor outcomes. Finally, by pinpointing areas with excessive health expenditures, the VA can develop cost-reduction measures to improve Veterans' health while containing costs.

External Links for this Project

NIH Reporter

Grant Number: I01HX002299-01A2

Dimensions for VA

Dimensions for VA is a web-based tool available to VA staff that enables detailed searches of published research and research projects.

Learn more about Dimensions for VA.

VA staff not currently on the VA network can access Dimensions by registering for an account using their VA email address.
    Search Dimensions for this project


Journal Articles

  1. Mutiso F, Pearce JL, Benjamin-Neelon SE, Mueller NT, Li H, Neelon B. Bayesian negative binomial regression with spatially varying dispersion: Modeling COVID-19 incidence in Georgia. Spatial statistics. 2022 Dec 1; 52:100703. [view]
  2. Davis M, Snider MJE, Hunt KJ, Medunjanin D, Neelon B, Maa AY. Geographic variation in diabetic retinopathy screening within the Veterans Health Administration. Primary Care Diabetes. 2023 Oct 1; 17(5):429-435. [view]
  3. Hunt KJ, Jenkins AJ, Fu D, Stevens D, Ma JX, Klein RL, Azar M, Zhang SX, Lopes-Virella MF, Lyons TJ, VADT Investigators. Serum pigment epithelium-derived factor: Relationships with cardiovascular events, renal dysfunction, and mortality in the Veterans Affairs Diabetes Trial (VADT) cohort. Journal of diabetes and its complications. 2019 Oct 1; 33(10):107410. [view]

DRA: Diabetes and Other Endocrine Conditions
DRE: Epidemiology, TRL - Applied/Translational
Keywords: Data Visualization, Diabetes, Disparities, Research Tools, Socioeconomic Factors
MeSH Terms: none

Questions about the HSR website? Email the Web Team

Any health information on this website is strictly for informational purposes and is not intended as medical advice. It should not be used to diagnose or treat any condition.