Talk to the Veterans Crisis Line now
U.S. flag
An official website of the United States government

VA Health Systems Research

Go to the VA ORD website
Go to the QUERI website

HSR&D Citation Abstract

Search | Search by Center | Search by Source | Keywords in Title

The functional morphology of the postpulmonary septum of the American alligator (Alligator mississippiensis).

Cramberg M, Greer S, Young BA. The functional morphology of the postpulmonary septum of the American alligator (Alligator mississippiensis). Anatomical record (Hoboken, N.J. : 2007). 2022 Oct 1; 305(10):3055-3074.

Dimensions for VA is a web-based tool available to VA staff that enables detailed searches of published research and research projects.

If you have VA-Intranet access, click here for more information vaww.hsrd.research.va.gov/dimensions/

VA staff not currently on the VA network can access Dimensions by registering for an account using their VA email address.
   Search Dimensions for VA for this citation
* Don't have VA-internal network access or a VA email address? Try searching the free-to-the-public version of Dimensions



Abstract:

The American alligator (Alligator mississippiensis) has a postpulmonary septum (PPS) that partitions the intracoelomic cavity. The PPS adheres to the capsule of the liver caudally and to the visceral pleura of the lung cranially; the ventrolateral portions of the PPS are invested with smooth muscle, the remainder is tendinous. Differential pressure transducers were used to record the intrathoracic (ITP) and intraperitoneal (IPP) pressures, and determine the transdiaphragmatic pressure (TDP). Each ventilatory pulse resulted in a pulse in ITP and a significantly lower pulse in IPP; meaning that a TDP was established, and that the pleural and peritoneal cavities were functionally isolated. The anesthetized alligators were tilted 30° head-up or head-down in order to displace the liver. Head-up rotations caused a significant increase in IPP, and a significant decrease in ITP (which became negative); head-down rotations produced the opposite effect. During these rotations, the PPS maintained opposite pressures (positive or negative) in the pleural and peritoneal cavities, and established TDPs greater than have been reported for some mammals. Two types of "breaths" were recorded during these experiments. The first was interpreted as a contraction of the diaphragmaticus muscle, which displaces the liver caudally; these breaths had the same effect as the head-up rotations. The second type of breath was interpreted as constriction of the thoracic and abdominal body walls; this type of breath produced pronounced, long-duration, roughly parallel, increases in ITP and IPP. The smooth muscle within the PPS is suggestive of higher-order adjustment or tuning of the PPS's tensile state.





Questions about the HSR website? Email the Web Team

Any health information on this website is strictly for informational purposes and is not intended as medical advice. It should not be used to diagnose or treat any condition.